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Abstract

Background: Because of its non-destructive nature, label-free imaging is an important strategy for studying
biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast
artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation
efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell
detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple
contrast microscopic modalities.

Results: We built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture
dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative
phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for
label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of
segmentation methods originally not applicable on label-free images. Further we compared foreground
segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction
methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable
extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for
each microscopy modality and published them online.

Conclusions: We demonstrate that image reconstruction step allows the use of segmentation methods not
originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and
reconstructed annotated data and Matlab codes are provided.

Keywords: Microscopy, Cell segmentation, Image reconstruction, Methods comparison, Differential contrast image,
Quantitative phase imaging, Laplacian of Gaussians

Background
Microscopy has been an important technique for
studying biology for decades. Accordingly, fluorescence
microscopy has an irreplaceable role in analyzing cel-
lular processes because of the possibility to study the
functional processes and morphological aspects of living
cells. However, fluorescence labeling also brings a number
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of disadvantages. These include photo-bleaching, diffi-
cult signal reproducibility, and inevitable photo-toxicity
(which results not only from staining techniques but also
from transfection) [1]. Label-free microscopy techniques
are the most common techniques for live cell imaging
thanks to its non-destructive nature, however, due to the
transparent nature of cells, methods of contrast enhance-
ment based on phase information are required.
The downside of contrast enhancement is an introduc-

tion of artifacts; Phase contrast (PC) images contain halo
and shade-off, differential image contrast (DIC) and Hoff-
manModulation Contrast (HMC) introduce non-uniform
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shadow-cast artifacts (3D-like topographical appearance).
Although various segmentation procedures have been
developed to suppress these artifacts, a segmentation is
still challenging.
On the other hand, quantitative phase imaging (QPI),

provides artifact-free images of sufficient contrast.
Although there are no standardized methods for the seg-
mentation of QPI-based images, fundamental methods
for segmentation of artifact-free images (e.g. from fluores-
cence microscopy) will be utilized.
In this review, we describe and compare relevant meth-

ods of the image processing pipeline in order to find
the most appropriate combination of particular meth-
ods for most common label-free microscopic techniques
(PC, DIC, HMC and QPI). Our aim is to evaluate
and discuss the influence of the commonly used meth-
ods for microscopic image reconstruction, foreground-
background segmentation, seed-point extraction and cell
segmentation. We used real samples - viable, non-stained
adherent prostatic cell lines and captured identical fields
of view and cells manually segmented by a biologist. Com-
pared to microscopic organisms like yeast or bacteria,
adherent cells are morphologically distinctly heteroge-
neous and in label-free microscopy, the segmentation is
therefore still a challenge. We will use the most common
imaging modalities used by biologist and we will provide
a recommendation of image processing pipeline steps for
particular microscopic technique.
The segmentation strategies tested herein are selected

to provide the most heterogeneous overview of recent
state of the art excluding the simplest and outdated meth-
ods (e.g. simple connected component detection, ulti-
mate erosion, distance transform without h-maxima etc.).
Deep-learning strategies are intentionally not included
due to their distinct differences, high demands on training
data and the range of possible settings (training hyperpa-
rameters, network architecture, etc.).

Results
In the paragraphs belowwe provide a detailed summary of
each image processing step from the pipeline (see Fig. 1),
followed by short description of achieved results. We start
with description of “all-in-one” tools and continue with
image reconstruction, foreground-background segmenta-
tion, cell detection and final single cell segmentation (i.e.
instance segmentation).
Due to the large number of tested methods and

approaches, we have decided to introduce a specific des-
ignation of the methods. We used prefix in order to refer
to image reconstruction (‘r’), foreground-background seg-
mentation (‘s’) and cell detection (‘d’) and finally to all-in-
one tools (‘aio’). The list of these designations, number of
parameters to be adjusted in these methods and computa-
tional demands are provided in Table 1.

“All-in-one” tools
First, we performed an analysis with the available com-
mercial and freeware “all-in-one” tools including FAR-
SIGHT [2], CellX [3], Fogbank [4], FastER [5], CellTracer
[6], SuperSegger [7], CellSerpent [8], CellStar [9], Cell-
Profiler [10] and Q-PHASE’ Dry mass guided watershed
(DMGW) [11]. As shown in Table 2 the only algorithm
providing usable segmentation results for raw images is
Fogbank, which is designed to be an universal and easy
to set segmentation tool. Very similar results were pro-
vided by CellProfiler, which is easy to use tool allowing to
crate complete cell analysis pipelines, however, it works
sufficiently only for reconstructed images. The QPI’ ded-
icated DMGW provided exceptional results, but for this
microscopic technique only. The remaining methods did
not provide satisfactory results on label free data; FastER,
although user-friendly, failed because of the nature of
its maximally stable extremal region (MSER) detector.
FARSIGHT failed with the automatic threshold during
foreground segmentation. CellX failed in both the cell
detection with gradient-based Hough transform and in
the membrane pattern detection because of indistinct cell
borders. The remaining segmentation algorithms - Cell-
Star, SuperSegger, CellSerpent - were completely unsuit-
able for label-free non-round adherent cells with Dice
coefficient < 0.1 and thus are not listed in Table 2 and
Fig. 4.
Because of the low segmentation performance of the

examined “all-in-one” methods, we decided to divide the
segmentation procedure into four steps - (1) image recon-
struction (2) background segmentation, (3) cell detection
(seed expansion) and (4) segmentation tailored to the spe-
cific properties of individual microscopic techniques (see
Fig. 1).
Image reconstruction
As shown, the performance of most “all-in-one” meth-
ods is limited for label-free data, in particular due to the
presence of contrast-enhancing artifacts in microscopic
images. Image reconstruction was therefore employed to
reduce such artifacts. Methods by Koos [12] and Yin [13]
(further abbreviated rDIC-Koos and rDIC-Yin, respec-
tively) were used for DIC and HMC images. Images of PC
microscopy were reconstructed by Top-Hat filter involv-
ing algorithm by the Dewan [16] (rPC-TopHat), or Yin
method (rPC-Yin) [14].
Generally, following conclusions apply for image recon-

structions:

• No distinctive differences in image reconstruction
efficacy were observed between the microscopic
methods apart fromQPI, as shown in Fig. 2 (described
by area under curve, AUC, see Methods for details).

• The AUC of QPI was distinctly higher with values
near 0.99
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Fig. 1 Block diagram showing segmentation approach. For details of individual steps, see Results and Materials and Methods.EGT, empirical
gradient treshold; LoG, Laplacian of Gaussians, DT, distance transform, MSER maximally stable extremal region

• Computationally more-demanding methods
(rDIC-Koos and rPC-Yin) perform better except for
relatively simple rPC-Top-Hat, which provides
similar results

• Probability maps generated by sWeka or sIllastik can
be used like reconstructions in later segmentation
steps. The advantage of this approach is the absence
of the need to optimize parameters.

DIC and HMC reconstructions
With regard to the morphology of reconstructed images,
rDIC-Koos provides a detailed structure of the cells with
distinctive borders from the background. For rDIC-Yin
[13], details of the reconstructed cells are more blurred
and uneven background with the dark halos around the
cells (see Fig. 2) complicating the following segmenta-
tion. As a result, AUC of rDIC-Yin was distinctly lower as
compared with the others.
Both rDIC-Koos [12] and rDIC-Yin [13] methods work

on the principle of minimizing their defined energy func-
tion. The main difference is that better-performing Koos
[12] uses l1-norm (instead of l2) for sparse regularization
term. Yin’s l2-norm, on the other hand, enables derivation
of closed form solution, which is much simpler and thus
faster to compute. Time needed for the reconstruction is
dramatically different - 2.1 s, 36.6 min, 13.1 min and 0.17
s for rDIC-Koos, rDIC-Yin, rPC-Koos and rPC-TopHat,
respectively. rDIC-Koos also introduces a parameter for
the number of iterations, which is however insensitive
within the tested range.
Although these methods were not designed for use

on HMC images, the same conclusions also apply for
the reconstruction of those images, which showed only
slightly worse results. The results of reconstruction accu-
racy can be seen in Fig. 2. Combinations of the best-
performing parameters are listed in the Additional file 1.

Phase contrast reconstruction
From the perspective of cellular morphology of recon-
structed images, rPC-TopHat creates artifacts between

closely located cells with the borders precisely dis-
tinguishable. Reconstruction based on rPC-Yin [14]
causes an even background without observable arti-
facts around the cells, however cell borders are miss-
ing and mitotic cells are not properly reconstructed
(see Fig. 2).
The optimization of the PSF parameters of rPC-Yin

reconstruction is problematic. The PSF parameters of a
particular microscope are not always listed or known.
Searching for these parameters with optimization proved
to be complicated. Because the optimizing function is
not smooth and contains many local local extrema, the
result changes significantly and chaotically even with a
small change of parameters or, at the same time, combina-
tions of parameter settings give very similar (near optimal)
results.
Regarding the computational times, the rPC-Yin recon-

struction works very similarly as the rDIC-Koos approach
for DIC, with similar computational difficulties. The result
of a simple top-hat filter unexpectedly turned out to
be comparable to the complex and computationally dif-
ficult rPC-Yin method. For the reconstruction perfor-
mance see Fig. 2, for optimal parameter setting see the
Additional file 1.

Foreground-background segmentation
In the next step of the workflow, the image foreground
(cells) was segmented from the image background. Both
unprocessed and reconstructed images were used. Follow-
ing strategies were used for the foreground-background
segmentation: (a) Thresholding-based methods: simple
threshold (sST), automatic threshold based on Otsu
et al. [17] (sOtsu), and Poisson distribution-based tresh-
hold (sPT) [2], (b) feature-extracting strategies: empirical
gradient threshold (sEGT) [18] and approaches specific
for PC microscopy by Juneau et al. (sPC-Juneau) [19],
Jaccard et al. (sPC-Phantast) [21], and Topman (sPC-
Topman) [20]), (c) Level-Set-based methods: Castelles
et al. [22] (sLSCaselles), and Chan-Vese et al. [23] (sLS-
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Table 1 List of tested segmentation methods and all-in-one segmentation tools and definition of abbreviations

Segmentation step Abbreviation Description Setable parameters Computational time Ref.

All in one tools

aioFasright Nucleus editor of Farsight toolkit N/A 4.96 s [2]

aioCellX segmentation, fluorescence quantification,
and tracking tool CellX

N/A 10.30 s [3]

aioFogbank single cell segmentation tool FogBank
according Chalfoun

N/A 12.00 s [4]

aioFastER fastER - user-friendly tool for ultrafast and
robust cell segmentation

N/A 0.42 s [5]

aioCellProfiler tool for cell analysis pipelines including single
cell segmentation

N/A 11.8 s [10]

aioDMGW Dry mass-guided watershed method,
(Q-PHASE, Tescan)

1.00 s

Reconstruction

rDIC-Koos DIC/HMC image reconstruction according
Koos

2 36.60 min [12]

rDIC-Yin DIC/HMC image reconstruction according Yin 2 2.10 s [13]

rPC-Yin PC image reconstruction according Yin 4 13.10 min [14]

rPC-Tophat PC image reconstruction according
Thirusittampalam and Dewan

1 0.17 s [15, 16]

Foreground-background segmentation

sST simple thresholding 1 < 0.01 s

sOtsu thresholding using Gaussian distribution 0 <0.01 s [17]

sPT thresholding using Poisson distribution 0 <0.01 s [2]

sEGT empirical gradient threshold 3 0.24 s [18]

sPC-Juneau Feature extraction approach according
Juneau

3 0.26 s [19]

sPC-Topman Feature extraction approach according
Topman

4 0.35 s [20]

sPC-Phantast Phantast toolbox developed by Jaccard 5 0.35 s [21]

sLS-Caselles Level-set with edge-based method 2 31.40 s [22]

sLS-ChanVese Level-set with region-based method 2 11.10 s [23]

sGraphCut Graph-Cut applied on recosntructed and raw
data

2 15.80 s [24]

sWekaGraphCut Graph-Cut applied on probability maps
generated by Weka

2 31.80 min** [24]

sIlastikGraphCut Graph-Cut applied on probability maps
generated by Ilastik

2 31.52 min** [24]

sIlastik machine learning tool by Sommer N/A 31.20 min+21 s* [25].

sWeka machine learning tool by Arganda-Carreras N/A 27.60 min+2.20
min*

[26]

Cell detection (seed-point extraction)

dLoGm-Peng multiscale LoG by Peng 4 3.60 s [27]

dLoGm-Kong multiscale LoG by Kong 5 4.20 s [28]

dLoGg-Kong generalized LoG filter by Kong 2 46.40 s [28]

dLoGg-Xu generalized LoG filter by Xu 3 5.10 s [29]
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Table 1 List of tested segmentation methods and all-in-one segmentation tools and definition of abbreviations (Continued)

Segmentation step Abbreviation Description Setable parameters Computational time Ref.

dLoGh-Zhang Hessian analysis of LoG images by Zhang 1 8.90 s [30]

dFRST fast radial-symmetry transform 5 153.10 s [31]

dGRST generalized radial-symmetry transform 5 572.30 s [32]

dRV-Qi radial voting methods by Qi et al. 5 95.00 s [33]

dDT-Threshold distance transform by Thirusittampalam,
threshold-generated foreground

4 0.11 s [15]

dDT-Weka distance transform by Thirusittampalam,
sWeka-generated foreground

3 0.11 s‡ [15]

dMSER maximally stable extremal region method
(MSER)

3 2.10 s [34]

dCellDetect machine learning method based on MSER 1 141.70 s/60.20 s* [35]

Single cell (instance) segmentation

MCWS† Marker-conttrolled watershed 0 1.40 s

MCWS-dDT† Marker-conttrolled watershed on DT image 0 1.41 s

For detailed list of optimized parameters see Additional file 1. * computational time for learning based approaches indicated as two values for learning and classification. **
computational time for Weka+Graph cut combination shown as sum time of these methods. ‡ not includes time for Weka probability map creation, † indicate final
segmentation step following foreground-background segmentation and seed-point extraction. Number of parameters in “all-in-one” approaches not shown because of the
GUI-based nature, similarly, not shown for learning-based approaches, see Methods section for details. Computational time shown for one 1360×1024 DIC field of view

ChanVese), (d) Graph-cut [24], and (e) Learning-based
Ilastik [25], and Trainable Weka Segmentation [26].
Based on the obtained results, this step can be con-

sidered the least problematic in segmentation, with the
following general findings:

• Well-performing methods (e.g. sWeka, sIllastik,
sLS-Caselles,sEGT, sPC-Juneau) are robust enough
to work even on unreconstructed data.

• Image reconstruction improves
foreground-background segmentation efficacy and
once reconstructed, there are no distinct differences
in segmentation efficacy between microscopic
techniques

• QPI performs dramatically better even
unreconstructed

• Learning-based methods (sWeka and sIlastik)
perform better by a few units of percents. Its
performance can further be improved with GraphCut.

• More time-consuming methods (sLS-Caselles,
sLS-ChanVese, sGraphCut, sWeka, sIlastik) does not
necesarily provide better results. For detailed results,
see chapters below and Fig. 3.

Threshold-based approaches
The Simple threshold (sST) provides better results than
automatic thresholding techniques assuming Poisson
distribution (sPT) or Otsu method (sOtsu). The potential
of these automatic techniques lies in the segmentation of

images, where optimal threshold value varies between the
images. However, this is not necessary for QPI images
(constant background value increases success of sST)
and for reconstructed images with background removal
(background values are close to zero, so the histogram
cannot be properly fitted with Gaussian or Poison dis-
tribution, see Table 2). There are not any parameters to
optimize for sOtsu and sPT methods, which is the main
advantage. The results of thresholding could be poten-
tially improved by morphological adjustments. Regarding
the computational times, these are the simplest and thus
the fastest possible methods, which are listed mainly to
provide basic idea about the segmentability of our data.

Feature-extraction-based approaches
The feature-based approaches - sEGT, sPC-Topman, sPC-
Phantast and sPC-Juneau are all mainly based on the
extraction of some feature image, which is then thresh-
olded and morphologically modified. Because of fea-
ture thresholding strategies, the segmentation is possible
without the image reconstruction. Thus these methods
are among the most straightforward approaches to extract
and threshold some local features (e.g. absolute value of
gradient or local standard deviation).
All these methods can be easily adjusted, have the same

number of parameters and the segmentation performance
is very similar (see Table 1) with slightly better-performing
sEGT. Compared to the other feature-extraction-based
methods, sEGT includes elimination of small holes.
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Table 2 The segmentation efficacy (shown as Dice coefficient) of individual segmentation steps on raw and reconstructed image data

Method

Segmentation efficacy (Dice coefficient)

QPI DIC HMC PC

raw raw rDIC
Koos [12]

rDIC
Yin [13]

raw rDIC
Koos [12]

rDIC
Yin [13]

raw rPC
Yin [14]

rPC
TopHat [15]

Foreground-background segmentation

sWekaGraphCut 0.96 0.86 0.89 0.84 0.86 0.84 0.84 0.86 0.80 0.84

sIllastikGraphCut 0.94 0.87 0.89 0.84 0.87 0.84 0.84 0.80 0.80 0.84

sWeka 0.94 0.85 0.87 0.80 0.85 0.82 0.79 0.81 0.72 0.81

sIlastik 0.94 0.85 0.86 0.80 0.82 0.82 0.79 0.84 0.72 0.82

sLS-Caselles 0.88 0.83 0.82 0.79 0.84 0.79 0.79 0.77 0.75 0.79

sEGT 0.89 0.88 0.85 0.64 0.86 0.79 0.70 0.74 0.68 0.79

sPC-Phantast N/A N/A N/A N/A N/A N/A N/A 0.77 N/A N/A

sPC-Juneau 0.85 0.85 0.84 0.59 0.82 0.77 0.69 0.73 0.72 0.76

sPC-Topman N/A N/A N/A N/A N/A N/A N/A 0.72 N/A N/A

sLS-ChanVese 0.61 0.48 0.74 0.55 0.68 0.67 0.36 0.64 0.65 0.76

sGraphCut 0.92 0.38 0.78 0.64 0.32 0.59 0.58 0.40 0.70 0.74

sST 0.92 0.339 0.76 0.61 0.31 0.72 0.53 0.40 0.69 0.73

sPT 0.83 0.34 0.60 0.34 0.30 0.46 0.08 0.29 0.67 0.73

sOtsu 0.62 0.34 0.36 0.31 0.28 0.16 0.18 0.24 0.51 0.66

Cell detection (seed point extraction)

dGRST 0.94 0.65 0.79 0.85 0.75 0.81 0.85 0.81 0.77 0.88

dLoGm-Kong 0.90 0.83 0.90 0.86 0.72 0.84 0.85 0.52 0.69 0.78

dFRST 0.94 0.58 0.78 0.82 0.70 0.78 0.82 0.82 0.74 0.88

dLoGm-Peng 0.89 0.71 0.86 0.78 0.69 0.83 0.86 0.51 0.73 0.84

dLoGg-Kong 0.85 0.83 0.80 0.84 0.74 0.82 0.83 0.43 0.72 0.79

dDT-Weka 0.81 0.68 0.81 0.74 0.73 0.72 0.75 0.80 0.76 0.78

dLoGg-Xu 0.84 0.77 0.80 0.80 0.65 0.81 0.78 0.52 0.71 0.78

dDT-Threshold 0.94 0.26 0.91 0.86 0.54 0.86 0.84 0.49 0.76 0.81

dRV-Qi 0.77 0.61 0.57 0.58 0.70 0.48 0.48 0.82 0.59 0.65

dMSER 0.93 0.06 0.55 0.58 0.29 0.82 0.69 0.65 0.79 0.68

dCellDetect 0.92 0.00 0.88 0.89 0.00 0.83 0.84 0.00 0.71 0.81

dLoGh-Zhang 0.82 0.13 0.52 0.64 0.25 0.63 0.65 0.49 0.70 0.61

Single cell (instance) segmentation

MCWS-dDT† 0.77 0.58 0.66 0.61 0.47 0.54 0.55 0.52 0.37 0.62

MCWS† 0.82 0.55 0.69 0.63 0.26 0.54 0.53 0.41 0.39 0.60

aioFogbank 0.71 0.54 0.55 0.42 0.44 0.38 0.39 0.46 0.34 0.19

aioCellProfiler 0.69 0.37 0.55 0.38 0.19 0.45 0.27 0.09 0.41 0.54

aioDMGW 0.82 0.08 0.62 0.38 0.00 0.48 0.29 0.10 0.39 0.65

aioFasright 0.21 0.15 0.43 0.00 0.00 0.26 0.14 0.03 0.37 0.57

aioCellX 0.34 0.03 0.08 0.21 0.02 0.18 0.05 0.07 0.03 0.16

aioFastER 0.09 0.03 0.07 0.00 0.02 0.17 0.01 0.25 0.08 0.06

Sorted by Dice coefficient (high to low). N/A, not applicable, for foreground background segmentation, methods designated for PC image were not deployed on other
microscopic modalities

The performance of feature-extraction methods is
technique-dependent with the highest scores for DIC
and QPI and the lowest (but still high) for PC. This

is mostly due to halos in PC; although sPC-Topman
and sPC-Phantast are extended by the elimination of PC
artifact regions, sPC-Topman have even worse results
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a b c

Fig. 2 Quality of reconstructions a. field of view for raw and reconstructed HMC, DIC, PC and QPI images. Image width is 375 μm and 85 μm for field
of view and detail below (b). receiver operator curve for particular image reconstruction (c). profile of reconstructed image corresponding to section
in detail in (a). AUC, area under curve, ROC, receiver-operator curve

than sEGT or sPC-Juneau and sPC-Phantast leads to a
slight improvement only for a cost of more parameters
to be set.

From feature thresholding methods, sEGT was shown
to be the best with only a small number of parameters and
great versatility. Because of its percentile based threshold,
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a b

c

Fig. 3 Foreground-background segmentation step. a representative images showing tested foreground-background segmentation methods of
rDIC-Koos-reconstructed DIC image. Dependency between area used for training and Dice coefficient for learning-based approach Ilastik (b) and
Weka (c). scalebar indicates 50 μm

it can be used even with a default setting, which achieves
e.g. 0.84 Dice coefficient value for QPI. Compared to
threshold-based methods, feature-extraction strategies
perform approximately 10% better. Considering the com-
putational demands, these methods are very simple and
fast - comparable to simple thresholding.

Level-set-based approaches
Both sLS-Caselles [22] and sLS-ChanVese [23] active con-
tours tended to shrink too much, which was compensated
by setting additional force to negative sign, which leads
to a tendency of the contour to grow. The increase of the

additional force leads to a better Dice coefficient value
until a breaking point, after which it leads to the total
divergence of the contour. Still, the value of additional
force had a much greater influence than the smoothness
parameter.
Compared to the above-mentioned foreground-

background segmentation strategies, the level-set based
methods are relatively complicated and computation-
ally difficult (tens of seconds vs. less than 1 s per FOV,
Table 1). In their basic forms, two parameters are needed
to be set. Another great disadvantage is that proper
initialization is required, mainly the sLS-Caselles method
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is very sensitive to initialization. Based on segmentation
results, sLS-ChanVese is applicable on reconstructed
images only, and does not even reach the segmentation
efficacy of simple threshold results. On the other hand,
sLS-Caselles is applicable on raw images, but only for PC
images it surpasses the otherwise much faster sEGT.

Graph-cut
There is a large number of methods and modifications
based on Graph-Cut. Herein, we tested the basic model
only. When Graph-cut was employed on the recon-
structed images (sGraphCut), the highest Dice coefficient
was obtained among non-trainable approaches except for
rPC-Tophat, being surpassed by sLS-ChanVese. Never-
theless, Graph-Cut does not outperform simple threshold
dramatically, providing roughly 2% increase in Dice coef-
ficient and is only suitable for reconstructed data.
Regarding differences between microscopic meth-

ods, the Graph-cut approach was most suitable for
reconstructed DIC images, followed by PC and HMC.
Regarding the computational times, this method performs
similarly as the level-set-based strategies (tens of seconds
per FOV - Tables 1 and 2). Optimized values are shown in
Additional file 1.

Trainable approaches
Trainable Weka segmentation (sWeka) and Ilastik
(sIlastik) were employed in this step. Similarly to the
feature-extracting approaches, these are applicable on
raw, unreconstructed data. Both sIlastik and sWeka
outperformed all tested foreground-background segmen-
tation methods with Dice coefficient up to 0.94 for QPI
and up to 0.85 for DIC, HMC and PC.
Regardless of the imaging modality used, there was an

identifiable “breakpoint” in the dependency between the
area size used for learning and the segmentation efficacy
after which no dramatic increase in Dice coefficient was
observed, see Fig. 3. For DIC, PC, and HMC it was approx.
at the size 70 × 70 px., for QPI, distinctly smaller area
was necessary, approx. 25 × 25 px. These areas roughly
correspond to the cell size. However, to demonstrate the
theoretical maximum of this method and to compare it
with Ilastik, learning from one whole FOV for DIC, HMC,
and PC and from 3 FOVs for QPI was deployed (see
Table 2.
Next, an effect of learning from one continuous area in

one FOV, or smaller patches of same sizes from multiple
FOVs was tested. On DIC data it was demonstrated that
learning from multiple areas causes significant, but slight
2% increase increase in Dice coefficients.
No increase of Dice coefficient was observed when

different filters were enabled apart from the set of
default ones (“default” vs “all”) as well as changing
of minimum/maximum sigma. This was tested with a

random search approach and with the Dice coefficient
varying ±0.01. Both Weka and Ilastik provide almost
the same segmentation results and are identically time-
demanding.
There are two parameters to be optimized: terminal

weights and edge weight. Edge weight (designated as
“smoothness” in the GUI, range 0-10) reflects a penalty
for label changes in the segmentation (higher values cause
smoother result).
Furthermore, probability maps generated by sWeka

and Ilastik under optimal settings were exported and
these maps were further segmented by Graph-Cut
(sWekaGraphCut/sIlastikGraphCut) and optimized in a
same manner as sGraphCut on reconstructed data.
A slight increase of the segmentation efficacy caused
the sWekaCraphCut/sIlastikCraphCut combination to be
the most efficient foreground-background segmentation
method for QPI, HMC, and PC, only being surpassed by
EGT on raw DIC image data. More importantly, this was
achieved without the need of the image reconstruction.

Cell detection (seed-point extraction)
Once the foreground (cells) is separated from the back-
ground, the next step is to identify individual cells
(seed points). The following strategies were used: (a)
Cell shape-based, Laplacian of Gaussian (LoG) vari-
ants Peng et al. [27] (dLoGm-Peng), Kong et al.[28]
(dLoGm-Kong), Hessian Zhang et al.[30] (dLoGh-Zhang),
generalized Kong et al. [28] (dLoGg-Kong), general-
ized Xu et al. [29] (dLoGg-Xu), (b) Cell shape-based,
generalized radial symmetry transform [32] (dGRST),
fast radial symmetry transform [31] (dFRST), (c) Qi et
al.[33] radial voting (dRV-Qi), (d) distance transform
[15] (dDT-Threshold, dDT-Weka), (e) Maximally Sta-
ble Extremal Region [34] (dMSER), and (f ) dCellDetect
[35]. Following general conclusions are applicable for this
segmentation step:

• Seed-point extraction is crucial step of cell
segmentation

• The requirement of reconstructed images is a
significant bottleneck of the seed-point extraction

• multiscale and generalized LoG are among the most
robust and to some extent work also on
unreconstructed data

• Radial symmetry transform-based strategies perform
well

• Seed-point extraction is exceptional on QPI data
• Learning-based approach dCellDetect provide

exceptional results on reconstructed data.

Laplacian of Gaussian-based strategies
Multiscale LoG filters (dLoGm-Peng and dLoGm-Kong)
perform similarly as generalized versions (dLoGg-Kong
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and dLoGg-Xu), but Hessian-based LoG (dLoGh-Zhang)
were significantly worse in some cases. As for the tradi-
tional microscopic methods, LoG approaches enables the
highest achievable segmentation efficacy. It was found out
that particular combinations of reconstruction-LoG filter
perform better than others; an optimal reconstruction-
seed-point extraction combination is rDIC-Koos followed
by dLoGm-Peng for DIC, rDIC-Koos plus dLoGm-Kong
for HMC, and rPC-Tophat plus dLoGm-Peng for PC.
Moreover, there were dramatic differences in cell detec-
tion between QPI and the remaining contrast-enhancing
microscopic methods. On the other hand, there were no
differences with Dice coefficient 0.9 for both QPI and DIC
with dLOGm-Kong (Fig. 4).
Hessian variant dLoGh-Zhang achieved low segmenta-

tion efficacy on our samples of adherent cells (of various
sizes) due to the use of one estimated optimal kernel size
only (see Table 2). dLoGg-Kong originally completely fails
for some modalities due to the wrong cell size estimation
caused by sub-cellular structures, which produce higher
signal then cells. This was eliminated by introducing a new
σmin parameter, limiting the lower scale.
Regarding the computational times, LoG-based are

among faster techniques, being surpassed only by the
distance transform.

Radial symmetry transform-based strategies
Compared to the computationally-simple LoG-based
techniques, the dFRST [31] and generalized dGRST [32]
provide better results for unreconstructed QPI images
and, notably, for unreconstructed HMC and PC images.
On reconstructed data, a possible application is for PC
data with results very close to QPI segmentation. Never-
theless, computational times in the orders of hundreds of
seconds need to be taken into account.

Radial voting
Radial voting (dRV-Qi) approach [33] does not achieve
the results of fast LoG-based strategies for all microscopic
modalities, either raw or reconstructed, while being com-
putationally comparable to radial symmetry transform-
based approaches. Thus, it is considered not suitable for
such data.

Distance transform
The strong advantage of the distance transform [15] is
its speed, which is the highest among other seed-point
extraction strategies. Segmentation efficacy of the tested
version with optimal thresholding (dDT-Threshold) is the
highest among all microscopies except for PC, but image
reconstruction is needed. An alternative approach is to
use WEKA for binary image generation (dDT-Weka),
where cells are less separated than in a case of optimal
threshold.

Maximally stable extremal region
Compared to the relatively consistent performance of LoG
between microscopic techniques, the dMSER approach
[34] is distinctly more suitable for HMC reconstructed
by rDIC-Koos and PC reconstructed by rPC-Yin, where
the segmentation performance as well as computational
requirements are identical or similar to LoG.

CellDetect
The CellDetect approach uses [35] maximally stable
extremal region for segmentation. Adherent cells in unre-
constructed DIC/HMC/PC images are, however, dramat-
ically heterogeneous structures. Thus, there are no ele-
ments registered for learning and thus the performance
of CellDetect was similar to aioFastER methods. On the
reconstructed data, it performs similarly as LoG- or dis-
tance transform-based methods. Nevertheless, because
the trainable nature of this technique, enormous compu-
tational time demands must be taken into account (up to
100-fold higher than DT). Segmentation of microscopic
elements of low shape heterogeneity (e.g. yeast) would
profit from CellDetect significantly.

Single cell (instance) segmentation
The data which underwent reconstruction, foreground
segmentation and seed-point extraction were finally seg-
mented byMarker-controlled watershed (MCWS) applied
on distance transform or on images directly. Com-
pared to previous steps, errors generated by this step
have only minimal impact on overall segmentation qual-
ity, providing few-pixel-shifts to one or other adjacent
cells. The distance transform approach is more univer-
sal but, in case the cells are well-separated, MCWS-only
approach can provide better results. When compared to
“all-in-one” segmentation strategies, the approach pro-
posed by us provides dramatically better results except
of proprietary software for quantitative phase imaging
(see Table 2). With this in regard, the development of
a new method which is strictly based on the nature of
mass-distribution-QPI images could provide even better
results.
Finally, it was assessed how the segmentation accuracy’s

individual steps are affected by morphological aspects
of cells. Following aspects were studied (Fig. 5): cellu-
lar circularity and level of contact of cells with other
cells (isolated cells vs cells growing together in densely
populated areas, expressed as a percentage of cellu-
lar perimeter in contact with other cells). The circu-
larity ranged 38.2 to 63.5%, median 51.2%, (percentage
of cells with a circularity 100%: 2.1%), the percentage
of perimeter ranged 4.1–41.9%, median 22.0% (percent-
age of cells with no contact with others 21.7%). Cells
with circularity ranges 0–40% and 70–100% were con-
sidered low- and high-circularity cells. Regarding the
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a

b

Fig. 4 Seed-point extraction segmentation step and all-in-one segmentation approaches. a Results of segmentation, representative image of
rDIC-Koos-reconstructed DIC image followed by foreground-background segmentation with Traniable Weka Segmentation. Blue points indicate
seeds based on which cells are segmented using marker-controlled watershed. Note absence of seed-points for “all-in-one” segmentation
approaches. b Dependency between number of cells used for training and Dice coefficient for Celldetect

degree of contact with other cells, cells whose 0–15%
and 50–100% of perimeter was in contact with other
cells were designated “isolated” and “growing together”,
respectively.
It was found out that the reconstruction method does

not affect a difference in segmentation accuracy between
highly- and low-circular cells (the segmentation accu-
racy in highly circular cells is in average 15% better for
all reconstruction methods) without significant variations
for individual methods. Seed-point extraction, however, is
much more cell-shape-dependent (Fig. 5c). Because these
methods are blob detectors by nature, the result is better
for more circular cells with most methods. However,
the dDT-Treshold and dCellDetect are not affected by

circularity and are among the most efficient segmenting
tools at the same time.
Regarding the effect of a degree of contact with other

cells, method of image reconstruction does not affect a
difference in segmentation between densely and sparsely
populated areas (20% better segmentation results for iso-
lated cells). Seed-point extraction accuracy is however
even more profoundly affected by a level of contacts
with other cells (in average 25% better segmentation for
isolated cells).

Discussion
During the last two decades, the amount of approaches to
segment microscopic images increased dramatically. The
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a

b

c

Fig. 5 Cell segmentation efficacy and cell morphology. a histograms showing distribution of circularity and level of contact with other cells (shown
as percentage of cell perimeter touching with other cells. Based on histograms, low/high circularity and isolated/growing together groups were
created. b effect of cell reconstruction, on segmentation accuracy, subset of low/high circularity and low/high contact with other cells (for this step,
dLoGm-Kong was used in next segmentation step for all methods). c effect of various Seed-point extraction methods, effect of low/high circularity
and low/high contact on segmentation efficacy. Last step is shown for QPI data only

precise segmentation of label-free live-cell microscopic
images remains challenging and not completely solved
task. Furthermore, different microscopic techniquesmake
this task more difficult due to different image properties
provided.
Accordingly, the aim of this study was to compare the

most heterogeneous spectrum of segmentation methods
to real data of the same cells from multiple contrast
microscopicmodalities. The properties of each processing

step has been evaluated and segmentation accuracy has
been compared.
We used human adherent cells, which are much more

heterogeneous in shape and thus much bigger challenge
for segmentation than the segmentation of spherical bac-
teria or yeast. Based on the described results, we can now
summarize, discuss and suggest several findings directed
to both biologists and bioinformaticians from different
points of view.
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Segmentability of microscopic techniques
When considering a microscopy technique for label-free
segmentation, there were no dramatic differences in the
segmentation efficacy between DIC, HMC or PC. How-
ever, the highest segmentation efficacy was obtained when
QPI microscopy was used due to the higher image qual-
ity (without significant artefacts and high image contrast).
In principle, approaches originally intended for fluo-
rescence segmentation are applicable for these images.
QPI technique should be also the choice, when a fast,
high throughput segmentation is desirable, because no
image reconstruction is needed and simple threshold-
ing with MSER - Seeded watershed provides satisfactory
results.

Performance of segmentation steps
Regarding individual processing steps, the most crucial
are image reconstruction and seed-point extractionmeth-
ods. Foreground-background segmentation, on the other
hand, can be considered the least problematic part,
where no dramatic differences between methods were
observed, except that learning-based approaches scored
better. Regarding the seed-point extraction, however, a
reconstructed image is needed for almost all approaches
(except dDT-Weka), making seed-point extraction depen-
dent on precise reconstruction. Not all foreground-
background segmentation methods need reconstructed
images, because some are compatible with raw DIC or
PC images (e.g. sWeka, sLS-Caselles, sEGT) and gen-
erally perform well. Omitting the reconstruction step
will need the seed point extraction methods applica-
ble to raw data (eg. dDT-Weka or DT with different
foreground-background segmentation), which can slightly
reduce the quality of cell segmentation. It was also evi-
dent, that not all reconstruction algorithms are suitable
for the seed-point extraction (high Dice coefficient in the
foreground segmentation step does not guarantee suit-
ability for the seed-point extraction). It also cannot be
stated that the time-consuming methods are dramati-
cally better-performing in the seed-point extraction. Here,
the learning-based approach provided better results, too.
Below we provide short workflow summary for each
microscopic technique:

• QPI – this technique usually provides images with
the best image properties with respect to automated
image processing. We observed that Weka probability
map segmented with Graph-cut, followed by seed-
point extraction with dGRST and finally segmented
by Marker-controlled watershed gives superior
results. In general, any segmentation approach used,
QPI gained the highest segmentation efficacy.

• PC – for this modality we suggest simple and fast
reconstruction with Top-Hat filter, and dGRST or

dFRST for seed-point extraction. Graph-cut applied
to probability Weka probability maps produce best
foreground-background segmentation. Final
segmentation is slightly improved if
Marker-controlled watershed is applied to distance
transform image (instead of intensity image).

• DIC/HMC – the images from these modalities are
similar, which leads us to suggestion that the same
pipeline can be applied to both. We suggest to use
rDIC-Koos method for reconstruction and
Graph-cut applied to probability Weka probability
maps for foreground-background segmentation.
Thresholding with distance transform
(dDT-Threshold) is best for seed-point extraction,
finally segmented by Marker-controlled watershed.
Although DIC and HMC have a lot of similar
features, DIC produce generally better results.

All-in-one packages are extremely popular in biolo-
gist community and more or less provide the complex
solution for single cell segmentation task. However, these
packages implement common image processing meth-
ods (some of them described here) and together with
graphical user interface and interactions, provide rich
possibilities for segmenting the images. We can conclude
that FogBank and CellProfiler tools achieve the highest
segmentation efficacy among these approaches (without
need of programming skills) and it is also universal for var-
ious imaging modalities. Both FogBank and CellProfiler
use a similar generalizable approach based on the com-
bination of watershed and distance transform, however,
CellProfiler also includes a possibility to build complete
cell analysis pipelines and as such should be default choice
without programming.

Deep-learning remarks
Intentionally, our focus was set on a spectrum of tradi-
tional strategies while the rapidly-developing spectrum
of deep-learning-based segmentation was omitted. The
main practical limitation of application of deployment of
pre-trained U-net or other deep learningmethod (transfer
learning) is the need for sufficiently large training dataset
(covering different modalities and cell types/shapes).
However, the image databases for segmentation tasks
are not as large and complex as ImageNet [36], which
became a standard for pre-training of classification-based
networks. For this reason, available models use only pre-
trained encoder [37], which is pre-trained for classifica-
tion on ImageNet. As such, we leave this investigation for
future work, where deeper-comparison is highly needed,
especially for different amounts of training data and from
view of computational requirements.
Despite the tremendous success of deep learning

approaches applied in many computer vision tasks
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including live cell imaging, there is no straightforward
way how to use these methods for cell segmentation of
touching dense populated cells. One of the approaches to
achieve separated mask for each cell is to predict simple
binary foreground mask, but giving higher weight to cor-
rect prediction on the boundary as in [38]. Another simple
solution is to predict three pixel classes – background,
foreground and cell boundary as in [39], which provides
better separation of cells. On the other hand, deep learn-
ing can be also used for cell detection by regression of 2D
Gaussians on the position of centroids as in [40]. In [41],
authors combined detection and segmentation into simul-
taneous prediction with one U-Net network, where one
prediction map predicts distance to cell boundary (after
thresholding we obtain foreground-background segmen-
tation) and second map predicts distance to cell centroid
(detections are obtained with local maxima detection).
These techniques are very promising, however, their test-
ing is out of scope of this paper because our dataset is
not sufficiently large for training of these algorithms and
there is no standard way how to use deep learning for
cell segmentation, leading to enormous number of possi-
ble setups to test in order to achieve fair comparison to
classical methods.

Remarks and limitations
Because of Matlab platform was used, the information
regarding computational time is approximate with a large
software-dependent space for its reduction. All segmen-
tation steps were performed in a sequential way. Thus
parallel processing may provide a distinct improvement
for most of the methods, but this was beyond the scope of
this study. Based on a distinctive difference in a segmenta-
tion accuracy between “all-in-one” methods and individ-
ual methods reviewed herein, well-performing methods
usually have more than three parameters to be set (usu-
ally not even corresponding with morphological features
of the cells). Thus it is still difficult, if not impossible, to
automatize the whole segmentation process. In a spite of
this, deep-learning approaches provide some alternative –
instead of setting optimized parameters, user needs just to
provide a training dataset.
Although there are several excellent reviews on such

segmentation, a study practically comparing the to-date
best-performing approaches on real data from various
microscopic techniques is still missing. In [42] the authors
review a broad spectrum of segmentation methods to seg-
ment histological images. In [43] the authors focus on
available tools with GUI. The author of [44] summarizes
historical progress of cell segmentation methods. There
are also works on comparingQPI, DIC and PC, but in [45],
the authors compare modalities without segmentation
and in [46] authors test algorithms only onQPI data, with-
out considering image reconstructions. In Ulman et al.

[47] the authors compared segmentation and tracking on
various microscopic methods, including 2D fluorescent,
DIC and PC. Many detection errors can be eliminated
with tracking. Thus the comparisons with our review
might be rather relative. Similarly to our results, one of the
best-performing algorithms “KTH-SE” used a relatively
simple thresholding together with a precise seed-point
extraction (tracking in their case). This underlines the fact
that a precise seed-point extraction is the most crucial
segmentation aspect. Also a segmentation performance
was significantly lower in the “Fluo-C2DL-MSC” dataset
characteristic by low circularity of cells.
Our study has several limitations. These include the

focus on the segmentation of adherent cells, not those
cultivated in the 3D matrix or suspension-cultured coun-
terparts. Also the ground truth manual segmentation was
performed by a human, although experienced biologist.
The problem of overlapping cells was present, although
relatively rare. Using the learning-based approaches it was
demonstrated that those surpass the transitional strate-
gies. This predicts a future success for deep-learning
methods and probably also their future superiority. Also,
in accordance with cell time-lapse trend in microscopy,
cell segmentation is just the first part of the story with cell
tracking being another one.

Conclusion
In this study, we performed a comprehensive testing
of image processing steps for single cell segmentation
applicable for label-free images. We searched for pub-
lished methods, which are used by biologists and bioin-
formaticians, we assessed the suitability of used data
and we carefully tested particular segmentation steps
(image reconstruction, foreground-background segmen-
tation, seed-point extraction and cell segmentation) and
compared them with available “all-in-one” approaches.
As expected, learning-based methods score among the
best-performing methods, but well-optimized traditional
methods can even surpass these approaches in a fraction
of the time. We demonstrated that the image reconstruc-
tion step makes it possible to use segmentation methods
not directly applicable on the raw microscopic image.
Herein we collected a unique set of similar field-of-

view image of the same cells acquired by multiple micro-
scopic techniques and annotated by experienced biologist.
The raw and reconstructed data is provided, together
with the annotated ground truth and Matlab codes of all
approaches.

Methods
Dataset
Cell culture and culture condition
PNT1A human cell line was used in the experiment. This
cell line was derived from normal adult prostatic epithelial
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cells immortalized by transfection with a plasmid contain-
ing SV40 genome with defective replication origin. The
cell line was purchased from HPA Culture Collections
(Salisbury, UK). PNT1A cells were cultured in RPMI-
1640 medium supplemented with antibiotics (penicillin
100 U/ml and streptomycin 0.1 mg/ml) with 10% fetal
bovine serum (FBS). Prior microscopy acquisition, cells
were maintained at 37◦C in a humidified (60%) incubator
with 5% CO2 (Sanyo, Japan). Intentionally, high passage
number of cells was used (> 30) in order to describe
distinct morphological heterogeneity of cells (rounded
and spindle-shaped, relatively small to large polyploid
cells). For acquisition purposes, cells were cultivated in
Flow chambers μ-Slide I Luer Family (Ibidi, Martinsried,
Germany).

Microscopic image acquisition and dataset characteristics
QPI microscopy was performed on Tescan Q-PHASE
(Tescan, Brno, Czech Republic), with objective Nikon CFI
Plan Fluor 10 × /0.30 captured by Ximea MR4021MC
(Ximea,Münster, Germany). Imaging is based on the orig-
inal concept of coherence-controlled holographic micro-
scope [48, 49], images are shown as a 32bit file with val-
ues corresponding to pg/μm2 recalculated from radians
according to Barer and Davies [50, 51].
DIC microscopy was performed on Nikon A1R micro-

scope (Nikon, Tokyo, Japan) with a Nikon CFI Plan Apo
VC 20 × /0.75 objective captured by a Jenoptik ProgRes
MF CCD camera (Jenoptik, Jena, Germany).
HMC microscopy was performed on Olympus IX71

microscope (Olympus, Tokyo, Japan) with Olympus
CplanFL N 10 × /0.3 RC1 objective captured by Hama-
matsu Photonics ORCA-R2 CCD camera (Hamamatsu
Photonics K.K., Hamamatsu, Japan).
PC microscopy was performed on a Nikon Eclipse

TS100-F microscope, with a Nikon CFI Achro ADL 10 ×
/0.25 objective captured by Jenoptik ProgRes MF CCD
camera.
The captured dataset characteristics are summarized in

Table 3. All data were manually segmented by an expert in
cell biology as ground truth for segmentation and detec-
tion. Same areas of sample were captured using these
microscopes, but due to the cell movement and different
FOV size the overlap is not absolute.

All-in-one segmentation tools
Here are described “all-in-one” approaches (designated
with “aio” prefix).

aioFARSIGHT
FARSIGHT toolkit 0.4.5 module Nucleus editor [2] con-
sists of an automatic Poisson threshold binarization
refined with graph-cut (applied on a binary foreground
image) and produces initial segmentation containing

cell clusters. Next, Multiscale Laplacian-of-Gaussian is
used to produce feature map (image where blobs are
enhanced - see “LoG filters” section for more details),
which is segmented by local clustering algorithm. This
clustering algorithm then produces rough cell clus-
ter separation. Finally α-Expansions (multilabel graph
cut) is used to refine segmentation, with novel method
of Graph colouring for more efficient computation
(see [2] for more details).
The first set of parameters was cell-shape-derived: “min

scale” and “max scale” (the minimum and maximum scale
of the multiscale Laplacian of Gaussian filter) were set
based on a measured radius of equivalent circle of cells,
“xy clustering res” (resolution of the local maximum clus-
tering) was set similarly as “min scale”, and “min object
size” was set as the area of the smallest cell. The sec-
ond set of parameters was optimized: “high sensitivity”
(enable/disable high sensitivity binarization), “finalize seg-
mentation” (enable/disable the segmentation refinement
step), “use distance map” (enable/disable the use of the
distance constraint to select the LoG scales), and “refine-
ment range” (parameter sets the maximum distance that
an initial contour can be shifted).

aioCellX
Dimopoulos et al. [3] approach consists of seed genera-
tion with gradient-based Hough transform, construction
of membrane patterns images for each seeed (cross-
correlation with estimated membrane profile) and seg-
mentation of each such image with graph-cut. After that,
statistical morphological outliers are removed and indi-
vidual regions are combined (almost identical regions are
merged and overlaps are resolved).
CellX includes a GUI, where user can interactively set

cell size range, maximal cell length and estimated mem-
brane profiles.

aioFogbank
In Chalfoun et al. [4] Fogbank, foreground is segmented
with EGT. Seeds are detected as connected regions after
percentile thresholding (with some distance and size con-
straints). Pixels above a defined percentile level are then
connected to the nearest seed-point. Either intensity or
gradient image and either Euclidean or geodesic distance
are used for computation.

Table 3 Data-set summary

Modality FOV size Image size Num. of FOVs Num. of cells

QPI 376×376 μm 600×600 px 18 637

PC 1253×944 μm 1360×1024 px 10 2387

DIC 627×472 μm 1360×1024 px 11 862

HMC 867×660 μm 1344×1024 px 11 1297
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aioFastER
Hilsenbeck et al. [5] FastER applies MSER to construct
component tree and SVM for classification of regions into
groups of cells or false detections. Finally non-overlapping
regions with the highest score are selected. It shares
CellDetect similarities (see “CellDetect” section), but this
algorithm uses 9 features for SVM classification only and
does not compute globally optimal solution, thus being
computationally faster. To achieve complete segmenta-
tion (not only detection as CellDetect), authors modified
their approach on the algorithmic level. Size constraints of
cells (measured min/max cell size) were set and “de-noise”
parameter setting were optimized (off/on/strong). Larger
number of FOVs used for training were tested without
improvement.

Drymass-guidedwatershed
The dry mass-guided watershed method (designated as
aioDMGW) is a thresholding-based approach, imple-
mented as a part of Analyzer module of Q-PHASE soft-
ware 6.803 (Tescan, Brno, Czech Republic). First the phase
image is slightly smoothed and foreground is separated
from background using thresholding. Then watershed
starting from the local maxima is performed. The decision
of merging of touching segments, or leaving them sepa-
rated, is based upon the sums of pixel values (i.e. dry mass)
in each touching segment. The optimized parameters are:
threshold; min segment sum (the minimum accepted sum
of pixel values in each segment used to filter out noise
and cell debris); max merge sum (the threshold of sum
of pixel values of touching segments used to decide if the
segments should be merged or left separated).

aioCellProfiler
The CellProfiler [10] is a strong segmentation tool, how-
ever, we perceive it more as a platform where a substantial
part of the segmentation strategies used here can be
reproduced. Nevertheless, we evaluated output of “Indeti-
fyPrimaryObject” module, which combines thresholding
and watershed. Watershed is used twice, for seed-point
extraction and final single cell segmentation, and it is
applied to either intensity or DT image. Additionally,
module uses some smoothing and it remove seed-points
bellow some allowed distance. Measured range of cell
radiuses and optimal threshold (see Additional file 1) were
used and we optimized betwen application to intensity or
DT image for both steps.

Other all-in-one tools
Following algorithms were reviewed but not used in com-
parison with reasons stated below:
CellTracer [6] consists of 3 steps – foreground seg-

mentation, border segmentation and cell segmentation by
model fitting. This approach is more suitable for yeast-

or bacteria-shaped objects (coccus- or bacillus-shaped
with distinctive borders). Similar issues were observed in
SuperSegger [7], CellSerpent [8] or CellStar [9].

Image reconstruction techniques
DIC, HMC and PC image formation process can be
described as convolution between the original image of
the scene and 2D PSF. For PC images PSF is [13]

PSFPC(x, y) = δ(x, y) − airy
(√

x2 + y2
)

(1)

where δ(·) is Dirac delta function and airy(·) is Airy pat-
tern. This leads to halo and shade-off artifacts (see Fig. 2).
For DIC image PSF is difference of two Gaussians [52]:

PSFDIC(x, y)=−xu exp
(

−x2 + y2
σ

)
−yv exp

(
−x2 + y2

σ

)

(2)

where σ is Gaussian standard deviation and u =[u v]T
is unit vector specifying shear direction. It means that
DIC image is derivation under shear direction visible as
3D-like topographical appearance (see Fig. 2). The inverse
PSF then can be used for image reconstruction. The goal
of these reconstruction algorithms is to produce image
of blob-like cells qualitatively corresponding to cell mass
(similar to QPI). The methods described bellow are des-
ignated with prefix “r” (reconstruction), original modality
and author, where possible.
DIC reconstructionmethods were well reviewed in [12].

Based on the results of this study, two methods were cho-
sen: (a) fast, computationally-efficient Yin et al. approach
[13] (in following parts designated as “rDIC-Yin”) and (b)
more computationally-demanding Koos et al. [12] (des-
ignated as “rDIC-Koos”). HMC images have the similar
properties as DIC and therefore the same reconstruction
algorithms were tested.
For PC reconstruction [14], two methods were chosen

(a) more complex computationally-demanding method
based on PSF model (designed as “rPC-Yin”) (b) simple
Top-hat filtering (designated as “rPC-Tophat”).

rDIC-Koos
Method proposed by Koos [12] (rDIC-Koos) uses an
energy minimization with data term and total variation
regularization term

E = 1
2

∫∫
�

(u · �(K ∗ f̂ ) − g)2 + ws| � f̂ |d� (3)

where · denotes dot product, � denotes gradient, u =
[u v]T is unit vector specifying shear direction,� is image
domain and K is kernel which approximate PSF without
derivative (Gaussian function), where �K = PSFDIC(x, y).
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Euler-Lagrange equation of data term for symmetric ker-
nel K leads to

u∂xg + v∂yg −
∫∫

W
K

(
u2∂2x f̂ + 2uv∂x∂y + v2∂2y f̂

)
= 0

(4)

where ∂x and ∂y denotes partial derivatives and W is a
local window (with size of kernel). Finally, this can be
solved with gradient descent iterative method as

f̂ (t+1) = f̂ (t) − wa
(
u2∂2x f̂ (t) + 2uv∂x∂yf̂ (t) + v2∂2y f̂ (t)

)
∗ K

+ u∂xG + v∂yG − div
(

�f̂ (t)

|| � f̂ (t)||

)

(5)

where f̂ (t+1) is reconstructed image in next iteration, div
denotes divergence. Last term is proposed by total varia-
tion regularization.
Besides of shear angle, which is assumed to be known

(or recognizable from image - typically multiple of 45),
rDIC-Koos method has three parameters - weight of
smoothness (total variation) regularization ws, step size of
gradient descent wa and number of iteration it. Smooth
regularization sets compromise between noise elimina-
tion and details preservation. Too large step size leads to
method divergence and too small step size leads to slow
convergence. Number of iterations has a small influence
on the result; default value 20000 was used. For setting of
other parameters see Additional file 1.

rDIC-Yin
Yin et al. [13] presented a reconstruction method for
DIC images (rDIC-Yin) working withmultiple shear direc-
tions, but with some simplification in equations it also
works on images with one shear angle direction. Authors
assumed that distortion of themicroscope can bemodeled
by convolution with PSF

g = d ∗ f (6)

where d is PSF (in general a directional first-derivative-of-
Gaussian kernel, but simple difference without Gaussian is
used for simplification), g is acquired image and f is orig-
inal image. Simple inverse filtering leads to highly noisy
images, which can be reduced by regularization. This can
be achieved with optimization of energy function which
must be minimized over whole image domain

E(f̂) = (d ∗ f̂ − g)2 + ws(a ∗ f̂)2 + wr f̂2 (7)

This equation is composed of data term, smooth term
and sparse term (all with l2 penalization, where ws and
wr are weights for the smooth and sparse regulariza-
tions, respectively). f̂ is reconstructed image (approxima-
tion of f). Smoothness is achieved by setting a restored

pixel value to be close to the average of its neighbors
(where a =[ 1, 1, 1; 1,−8, 1; 1, 1, 1] /8). Sparse regulariza-
tion causes the value of background pixels to be close to
zero. Optimization of function has close-form solution in
Fourier space (F̂ = F{f̂} etc.)

F̂ = −(D � G) � (wsA � A + wr − D � D) (8)

where “�” and “�” denotes element-wise division and
multiplication, respectively.
Besides shear angle, rDIC-Yin has two parameters only,

ws and wr , which set smoothness and sparse regulariza-
tions, respectively.

rPC-Yin
In [14] Yin et al. used a deconvolution with sparse con-
straint regularization to reconstruct PC images. This
method was further expanded with dictionary of diffrac-
tion patterns [53], which deals with problematic mitotic
cells. This method is in fact a segmentation method as
presented in the Su at al. paper [53] and it therefore cannot
be used as preprocessing (i.e. reconstruction) step. rPC-
Yin [14] is very similar to rDIC-Yin [13] with modified
equation 7 to linear equation system with l1 penalization
for the sparse term.

E(f̂) = (Hf̂ − g)2 + ws f̂
T
Lf̂ + wr|�f̂| (9)

where f̂ and g are vectorized restored and acquired
images, H is the transfer matrix of the image formation
model and L is Laplacian matrix (corresponding to dif-
ferent expression of operators d and a in the equation 7).
� is positive diagonal matrix defining sparseness, ws and
wr are weights for the smooth and sparse regulariza-
tions. Because of l1 penalization of sparseness (known
to be better than l2) there in no closed-form solution. It
can be solved with an iterative algorithm which is based
on non-negative multiplicative updating (for more imple-
mentation details see [14]). PSF (which leads toH) is then
modeled by the equation 1, where airy pattern is

airy(r) = R
J1(2πRr)

r
− (R−W )

J1(2π(R − W )r)
r

(10)

where R and W are PSF-dependent parameters - outer
radius (R) and ring width (W ) of phase ring and J1(·)
is the first order Bessel function of the first kind. rPC-
Yin has also optimization parameters ws and wr which
define weights of components of optimized energy func-
tion. Other parameters not discussed in [14] were set
to default value (radius = 2, epsilon = 100, gamma =
3, scale = 1,maxiter = 100, tol = 10−16). Because of large
computational time, optimization of PSF and optimiza-
tion parameters was done separately - first proper PSF was
found (other parameters set to default value ws = 1 and
wr = 0.5) and then optimal W and R values were used in
optimization of ws and wr .
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rPC-Tophat
Top-hat filtering (referred here as rPC-Tophat) was used
by Thirusittampalam et al. [15] and Dewan et al. [16] for
halo artifacts elimination. This simple heuristic approach
shows very promising results and it is considered as the
next PC reconstruction technique in this paper.
Reconstruction based on top-hat filtering with disk-

shaped structuring element has only one adjustable
parameter - radius of structuring element, which is
roughly equal to the radius of the cell, with optimal value
r = 16.

Foreground-background segmentation
Thirteen methods has been tested and to make it more
clear, the methods are designated with prefix “s” (segmen-
tation), original modality and the author, where possible.

Thresholding
Three threshold-based techniques were used for the
foreground-background segmentation. Simple threshold
(named as sST) and two automatic threshold algorithms,
Otsu [17] (sOtsu) and Poisson distribution [2] (sPT).
Automatically determined thresholds varies between

FOVs, so a better result can be expected. sOtsu assumes
that gray-scale values are mixture of two Gaussian dis-
tributions. Nevertheless, for the adherent cell images the
mixture of two Poisson distributions is sometimes more
suitable [2], thus sPT was tested. For ST, threshold value
was optimized with 100 steps between minimal and max-
imal value.

Empirical gradient threshold
Chalfoun et al. [18] described an empirical gradient
threshold method (referred here as sEGT), which uses
empirically derived model for threshold estimation. sEGT
was described to work with different microscopic modal-
ities (PC, DIC, brightfield and fluorescence) and is appli-
cable also on the others, including raw (unreconstructed)
images. sEGT utilizes a Sobel operator to compute abso-
lute value of gradient, then the percentile-based threshold
is found, followed by the binary morphological opera-
tions. Three parameters must be set beforehand: minimal
cell size (removing small objects), minimal hole (removing
small holes) and manual fine-tune (decreasing or increas-
ing the estimated threshold). For all these methods mini-
mal object size was determined from a ground true mask
of the training images.

sPC-Juneau
Juneau et al. [19] described simple segmentation method
(referred here as sPC-Juneau) designed for PC images. It
computes a range map (difference between minimum and
maximum in local window), which is then thresholded.
Consequently, all holes and small objects in the binary

image are removed. Thus these parameters are optimized:
window size, threshold and minimal object size. Although
originally designed for PC images, it is applicable for other
modalities as well.

sPC-Phantast
Jaccard et al. [21] developed a software toolbox PHAN-
TAST consisting of foreground segmentation techniques
specialized for PC microscopy images. It computes local
contrast

C =
√
G ∗ I2 − (G ∗ I)2

G ∗ I
(11)

where G is a Gaussian kernel with standard deviation σ .
The resulting local-contrast image is then globally thresh-
olded and halos are corrected. For halos correction, the
gradient direction is computed by eight Kirsch filters
(8 directions). Halo pixels are initialized with boundary
pixels of binary image, then iteratively each halo pixel
points to its gradient direction and two adjacent direc-
tions, where each of these three pixels is marked as halo
if it is considered foreground (for bright halos gradient
points in and for dark cells gradient points out). Maxi-
mum cell area fraction removed as halo is restricted and
after elimination of halos, small objects and holes are
removed. This leads to 5 parameters - Gaussian σ , thresh-
old, halo area fraction, minimal hole size and minimal
object size.

sPC-Topman
Topman et al. [20] described another method for fore-
ground segmentation originally intended for PC images.
This approach applies two filters, one with a small
and one with a large local window computing the
standard deviation, where both are thresholded. The
result is an intersection of these two binary images,
where binary image from large window is morpholog-
ically eroded (with morphological element of half the
size of the large window) and final image is morpho-
logically opened and closed. This leads to 4 parame-
ters - two window sizes, threshold, and morphological
element size.

LevelSets
Matlab implementation of level-set method with function
activecontour was used. This implementation includes an
edge-based method [22] (referred as sLS-Caselles) and
region-based method [23] (referred as sLS-ChanVese).
Both methods use a Sparse-Field implementation [54] for
contour evolution and both have two adjustable param-
eters - smoothness of the result contour and additional
force, which leads to a tendency of the contour to grow
or shrink. While sLS-ChanVese segments the image into
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two regions based on the mean region intensities, sLS-
Caselles segments the image based on the edges. The
level-set methods were initialized with morphologically-
dilated binary results of Weka segmentation, because it
provides similar initial contours for all modalities. Num-
ber of iterations of the evolution was set to 1000, which
was shown to be enough for all types of images and all
parameter settings.

TrainableWeka Segmentation
Next, a machine learning tool for microscopy pixel
classification Trainable Weka Segmentation v.3.2.13 was
used [26] (designated as sWeka). Compared to previ-
ous foreground-background segmentation strategies, this
approach was primarily used directly on the raw data.
Weka was trained using the following default training
features (Gaussian blur, Sobel filter, Hessian eigenvalues,
difference of Gaussians filter, membrane projections) as
well all remaining available filters (variance filter, min-
imum filter, maximum filter, median filter, anisotropic
diffusion, bilateral filter, lipschitz filter, kuwahara filter,
gabor filters, Sobel filter, laplacian filter, structure, entropy
filter). For these filters it is also possible to set a σ

range, which specifies the filter size. Other parameters
were set to default values, random forest classifier was
set to 200 trees (WEKA FastRandomForest). Because of
learning nature of this approach, the effect of following
factors on segmentation efficacy was optimized: (a) num-
ber of fields of view used for learning (b) training features
used for learning (“all” and “default” training features),
(c) effect of various fields of view used for training (one
continuous area in one FOV, or smaller patches of same
sizes from multiple FOVs), (d) size of FOV used for learn-
ing (increasing the area from 6× 6 px to 1360× 1024 px).
Moreover, probability maps were exported and used for
further analyses.

Ilastik
Another tested machine learning tool for pixel classi-
fication was Ilastik v.1.3.0 [25]. Ilastik uses a random
forest classifier [55] with 100 trees and is very simi-
lar to WEKA. Ilastik was launched using the following
settings: enabled all training features: raw intensity, gra-
dient magnitude, difference of Gaussians, Laplacian of
Gaussian, structure tensor eigenvalues and the Hessian
matrix eigenvalues - all with 7 Gaussian smoothings with
σ = 0.3 − 10px.
Ilastik was optimized accordingly as Weka. It allows a

computationally expensive automatic selection of suitable
features. Based on a first optimization step, there was no
significant difference between “optimal” and “all” features.
Thus, in a spite of this and a fact that Ilastik has less
available features then WEKA, “all” features were used in
further steps.

Graph-cut approach
An ImageJ plugin for Graph-Cut (v. 1.0.2) based on the
reimplementation of Kolmogorov’s maxflow v3.01 library
[24] was used. The following data were used as an
input for Graph-Cut: (a) Probability maps generated by
Weka (referred as sWekaGraphCut), (b) images recon-
structed with approaches described in “Image reconstruc-
tion approaches” and (c) raw image data (both referred as
sGraphCut). There are two parameters to be optimized:
terminal weight and edge weight. Edge weight (designated
as “smoothness” in the GUI, range 0-10) reflects a penalty
for label changes in the segmentation (higher values cause
smoother result). Terminal weights (designated as “fore-
ground bias”, range 0-1) correspond to a cost of assigning
background pixels to the foreground.
Terminal weights (foreground bias in GUI) affect the

segmentation efficacy distinctly, thus its optimization is
crucial. On the other hand, edge weight (smoothness)
corresponds to the size of individual cells and has been
roughly estimated from 0.4 to 0.8 for used cell sizes
(between 1000 and 4000 pixels, respectively).

Cell detection (seed-point extraction)
The cell detection (seed-point extraction) plays a key
role in the segmentation of the overlapping objects. For
densely clustered and touching cells a precise cell detec-
tion has the most significant influence to the final seg-
mentation accuracy. The primary goal in the cell detection
is to recognize the presence of the individual objects in
the image. Finally, combination of successful foreground-
background separation followed by identification of
individual cells enable to segment individual cells. There
is a considerable amount of methods for cell detection
and the mostly used and cited methods are described and
evaluated in this paper. Because most of the described
methods require blob-like cells, image reconstruction is
necessary in most cases (except LoG and generalized LoG
filters by Kong et al. [28]).
The tested seed-point extraction methods usually

include parameters related to the cell radius (minimal and
maximal). For this reason we estimated these values from
the ground truth masks. Background segmentation from
the previous step was used to eliminate falsely detected
seeds in the background. Some of the tested meth-
ods already include this step (e.g. dLoGg-Xu [29]). The
binary background masks produced by trainable Weka
segmentation were used for this purpose. For clarity, the
methods described bellow are designated with prefix “d”
(detection), image processing approach and author, where
possible.

LoG filters
Because of distinctive popularity of the LoG filter for the
blob object detection, many modifications of this detector
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exist, e.g. multi-scale LoG, Hessian LoG, generalized LoG.
LoG filter at a scale σ is defined by equation

LoG(x, σ) = ∇2G (x, σ) = σ 2 − ||x||2
2πσ 6 e

−||x||2
2σ2 , (12)

where G is 2D Gaussian function, x = (x, y) and ||· || is
Euclidean norm [27]. In principle, this filter works as a
matched filter for blobs.
Multi-scale LoG filtering uses a bag of LoG filters with

m different sigma values, which leads to m − D feature
space. As proved by Lindeberg [56], LoG responses must
be normalized LoG(x, σ)norm = σγ LoG(x, σ) for scale
invariance, where γ = 2 for scale invariance, but it can be
refined for a preference of larger or smaller objects.
Peng et al. [27] used Maximum Intensity Projection

(MIP) of the series of LoG-filtered images MIP(x) =
max

σ
(LoGnorm(x, σ)), with threshold applied to result-

ing 2D image, where binary objects correspond to
the detected cells. This method (further designated as
dLoGm-Peng) has the following parameters: minimal
sigma σmin, maximal sigma σmax, sigma step 
σ , γ and
threshold.
Kong et al. [28] searched for local maxima higher than

defined threshold in whole m − D LoG scale space with
elimination of overlapping regions by a pruning process.
In the pruning process, the overlapping blobs are elimi-
nated, where only blob with larger value in m − D scale
space is preserved. This method has these parameters:
σmax, sigma step 
σ , γ , threshold and maximal overlap
ratio. Here for σ the logarithmic step is used. This method
is referred as dLoGm-Kong.
Hessian analysis of LoG (referred as dLoGh-Zhang)

described by Zhang et al. [30] uses the same bag of LoG-
filtered images, but optimal scale identification and cell
center detection is different. It is known, that local Hes-
sian matrix is positive definite for blob-like structures.
The Hessian H (computed from LoG-filtered image) at
position (x,y) can be approximated with differences in
2 × 2 neighborhood. Each connected region with a pos-
itive definite Hessian is considered as cell, where H is a
positive definite matrix whenH11 is positive and det(H) is
positive.

H(x, y, σ) =
(

∂LoG(x,y;σ)

∂x2
∂LoG(x,y;σ)

∂x∂y
∂LoG(x,y;σ)

∂y∂x
∂LoG(x,y;σ)

∂y2

)
. (13)

Optimal is considered a such scale where the mean inten-
sity of the LoG-filtered image is maximal on the positive
definite locations, and these positive definite regions are
the detected cells. Method is insensitive to choice of range
and steps of σ , which leaves only γ parameter to be opti-
mized. Zhang [30] also uses unsupervised classification to

identified true cells only, but in our case this leads to dete-
rioration of the results only and thus was not included in
the testing.
Intuitively rotationally-symmetric LoG kernels are very

sensitive to irregular cell shape. For this reason Kong
et al. [28] proposed a generalized LoG filter (referred as
dLoGg-Kong) for the detection of the elliptical shapes.
They derived an equation for elliptical kernel with two
standard deviations σx, σy and orientation �. Method also
includes a specific scale normalization with a parame-
ter α and automatic choice of sigma range based on the
initial analysis with circular LoG filters. For every pixel
position, a feature image is created as a sum of all fil-
ter responses and detected cells are local maxima in this
image (see [28] for more details). Thanks to the automatic
σ estimation, there is one parameter only - α. Method uses
integer kernel sizes smaller than estimated σmax. Small
kernels produce false peaks on a sub-cellular structures in
our data. These artefacts are eliminated by adding a σmin
parameter, which corresponds to a minimal cell radius.
Xu et al. (referred as dLoGg-Xu) [29] sped up this tech-

nique by summation of the filters with the same kernel
orientation �, which is possible thanks to the distributive
property of convolution. Instead of automatic estimation
of σ range, they estimate it from cell radii. Moreover
this technique includes a different normalization (without
parameter) and mean-shift clustering for elimination of
multiple-time detected seeds. Parameters of this method
are: σ range and mean shift window size.
A similar approach was described also in Peng et al. [27]

method. Parameter range of σ is estimated based on cell
radius as σ = r/

√
2. For dLoGm-Peng we used estimated

σmax and σmin. Step of σ (
σ ) is insensitive parameter,
therefore we set it to 1. For setting of other parameters see
Additional file 1. Authors [27] used γ = 2, which is proven
to lead to the theoretical scale invariance.When γ < 2 the
smaller objects are preferred, for γ > 2 the larger objects
are preferred. Appropriate setting of γ leads to mean Dice
coefficient improvement +0.089 for dLoGm-Peng method
and for this reason we add γ to optimized parameters
for both dLoGm-Peng and dLoGm-Kong methods. Simi-
larly for dLoGm-Kong we used estimated σmax and σmin
with 13 logarithmic steps like the authors[28] (for other
parameter settings see Additional file 1). Extension by γ

parameter leads to 3 parameters (besides of cell radii),
which are sensitive and must be properly set. Both gen-
eralized LoG methods try to avoid parameters setting,
where dLoGg-Xu has cell size-related parameters only (we
set it based on estimated radius) and dLoGg-Kong has
one adjustable parameter - scale normalization factor, but
cell size estimation is automatic. Both generalized LoG
methods are computationally expensive (see Table 1), but
dLoGg-Xu reduces the computational time by a reduction
of number of convolutions.
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Distance transform
Distance transform (DT) of foreground image is defined
as a distance to the nearest background pixel (Euclidean
distance is chosen as metric). Local maxima of the gen-
erated distance map are considered as cells. This method
often detects many false cells. For this purpose h-maxima
transform is used [15], which uses a grayscale morphology
for elimination of small local maxima, where parameter h
sets the depth of local maxima to be eliminated. We used
two modifications of this method; dDT-Threshold, where
binary foreground is computed with optimized threshold
and dDT-Weka, where foreground from Weka segmenta-
tion is used. Other parameter of this method is maximal
size of objects and holes, which are eliminated before
applying of the DT.

Fast radial-symmetry transform
Fast radial-symmetry transform [31] (referred as dFRST)
is a general method for the detection of circular points of
interest applicable to approximately circular objects. Pix-
els with absolute value of gradient greater than threshold
β vote in its gradient direction at the distance of radius
r ∈ R, where R is set of radii, determined based on
object/cell size. If bright blobs are only considered detec-
tion, positions of affected pixel is given by an equation

P(x) = x + round
(

g(x)
‖g(x)‖ r

)
(14)

where g(x) represents the gradient and round operator
rounds each vector element to its nearest integer. On posi-
tion P(x), an orientation projection image Or is increased
by 1 andmagnitude projection imageMr by ‖g(x)‖. Trans-
formation is defined as mean over all radii

S = 1
N

∑
r∈R

Fr ∗ Gr (15)

where

Fr(x) = Mr(x)
k

(
|Ôr(x)|

k

)α

(16)

Ôr(x) =
{
Or(x) if |Or(x)| < k
k otherwise

(17)

where Gr is a Gaussian kernel, α is the radial strictness
parameter and k is a scaling factor normalizing different
radii (where typically k ≈ 10). Inspired by Ram et al.
[57], we use a gray-scale dilatation to small local max-
ima suppression in S. Local maxima are then considered
as cells. As R we use all integer values between esti-
mated minimal and maximal cell radius. The parameters
for this method include: radial strictness α, scaling factor
k, size of morphology structuring element δ, and gradient
threshold β .

Generalized Radial-symmetry transform
The generalized radial-symmetry transform as described
by Bahlman et al. [32] (referred as dGRST) is able to
deal with elliptical shapes because affine transform is
employed.. Similarly to generalized LoG filters, we can
compute response for different axis scalings and rotations.
The dGRST principle is similar to dFRST method, but the
gradient g(x) is transformed to

ĝ(x) = GMG−1M−1g(x) (18)

where

M =
[

0 1
−1 0

]
(19)

andG is affine transformationmatrix - for ellipse it is rota-
tion and scaling with parameters θ , a and b.We can set r =
1 and used a and b to adjust the size of the desired ellipse
axis. All integer values between estimated minimal and
maximal cell radius with a > b and 6 steps for θ were used
for a and b. Bahlmann at al. [32] mentioned also a Gaus-
sian kernel specified by affine transformation parameters
θ , a and b. For consistency with dFRST, we use Gaus-
sian kernel with σ = 0.5 distorted with G transformation.
Remaining parameters are identical to dFRST.

Radial voting
Qi et al. [33] presented a modification of radial voting for
cells in histopathology specimens (reffered here as dRV-
Qi). It is based on an iterative radial voting described
previously [58], but works as a single-path voting followed
by a mean-shift clustering. Every pixel with position x =
[ x, y] vote in Gaussian smoothed gradient direction α(x),
with cone shaped-kernel function (voting area).

A(x, y, rmin, rmax,
) = {
x + rcosφ, y + rsinφ|rmin <

r < rmax, θ − 
 < φ < θ + 
}
(20)

where θ is an angle of vector α(x), {rmin, rmax} is kernel
radial range and 
 is the kernel angular range. In addi-
tion, voting sector is weighted by Gaussian function with
center located at kernel center. Every pixel (with gradi-
ent above certain threshold) update voting image V by
adding voting pixel gradient magnitude |g(x)| to all pixels
under kernel. Voting image is then thresholded with sev-
eral thresholds and results are summed and clustered with
mean-shift algorithm. For more details see [33]. We used
estimated rmin and rmax from the ground truth images,
thresholds were set to 0.2, 0.3,...0.9-times the maximum
of image, and we optimized sigma of gradient Gaussian
smoothing, sigma of Gaussian for kernel and mean shift
bandwidth. We also vote with all pixels, not only with pix-
els with high gradient magnitude, because computational
time of our implementation is not dependent on number
of voting pixels. Besides [33] we also tested original [58]
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and newer [59] methods, but both were less suitable for
adherent cells.

Maximally stable extremal region
Extremal regions of gray-value image are defined as con-
nected components of thresholded image It = I > t
for some t in this method (designated as dMSER).
As described in [34], dMSER produces stable extremal
regions of image which are stable in sense of area variation
w.r.t. changing threshold t. Minimal stability of extracted
region can be set with two parameters - threshold step
δ defining the percentage of intensity range and maximal
relative area change with this step. This method gener-
ates many regions which can overlap. Finally, the smallest
regions generated with the highest threshold are picked.
This is achieved by finding of the local maxima in the sum
of binary images of all regions. Another option is the usage
of most stable region from the overlapped ones, but this
was shown to be noneffective in our case.

CellDetect
Arteta et al. [35] implementation of CellDetect usesMSER
to identify the candidate regions, followed by a classifi-
cation of true regions. Method extracts 92-dimensional
feature vector with object histograms and shape descrip-
tors. Training proceeds in two phases. In the first phase,
training of binary SVM and its evaluation is done, which
produces score for each region. Region with one seed-
point and highest score (one for each seed-point) is used
as ground truth for the next phase. In the second phase,
structured SVM is used for classification of the regions
within each tree created from the overlapping regions,
but non-overlap constrains are included. For more details
see [35]. Method requires few training images with sim-
ple dot annotation and proper setting of MSER detector
to achieve high recall.

Single cell (instance) segmentation
After image reconstruction, foreground-background seg-
mentation and seed-point extraction, individual cells were
segmented using Marker-controlled (or seeded) water-
shed [60]. This step showed to be less crucial, because
inaccuracy in placing border between cells has a small
influence to segmentation efficacy only. Thus, for combin-
ing of foreground and seeds into the final segmentation,
we test only this simple but very robust technique. Note
that more advanced methods exist - e.g. graph-cut [61], or
level-set [62] based.
Maker-controlled watershed is similar to classic water-

shed approach, with restriction of local minima posi-
tions into detected seeds location, which can be sim-
ply done with mathematical morphology operations.
Besides of straightforward application on our images,
we proposed a second approach applied on DT image,

which does not require an intensity valley between
separated cells. For DT image we use geodesic dis-
tance transform [63] with distances from seeds (the dis-
tance within the foreground pixels only, ignoring the
background).

General parameter optimization strategy
Grid search with 10 steps was used for the optimization
of parameters of all methods, where suitable range was
selected experimentally by a few manual tests. Parame-
ters with large searched range (relatively large difference
between lower and upper bound) were searched with log-
arithmic scale. The same parameters ranges were used for
all modalities. All parameters were properly set for train-
ing images and then these values were used for all test-
ing images. For background segmentation and detection
methods Dice coefficient was used as an objective func-
tion (used e.g. in [18]). For image reconstruction tech-
niques the area under ROC curve (AUC) generated by
thresholding was used (as well as in [14] or [12]). Because
of large computational difficulty of some methods, we
attempted to eliminate such parameters from optimiza-
tion, which does not influence the objective function.
If threshold is optimized parameter, its value was opti-
mized between a minimal and maximal intensity of image
pixels, with 100 steps for simplicity. Before application
of each method, images were normalized into interval
[0,1], where minimal and maximal values of the first
image of each sequence were used as a reference for the
normalization.

Evaluation of results
The F1 score (Dice coefficient) was used as a measure
of segmentation accuracy for (1) foreground-background
segmentation, (2) seed-point extraction, and (3) single cell
segmentation, with following modifications:

Foreground-background segmentation evaluation
For the evaluation of cell segmentation, Dice coefficient
was used as follows:

Dice = 2|X ∩ Y |
|X| + |Y | (21)

where | · | is number of pixels of region, X and Y are
ground truth and result segmentation, respectively. Dice
coefficient is equal to F1-score, but this term is used for
pixel-wise evaluation. Another metric used for segmenta-
tion evaluation is Jaccard index, which is related to Dice
coefficient as:

Jaccard = Dice
2 − Dice

(22)

which is monotonically increasing function on interval
< 0, 1 > (the range of Dice values). This means that order
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of quality of segmentation algorithmsw.r.t. Jaccard is same
as w.r.t. Dice coefficient and for this reason we evaluated
only Dice coefficient.
Dice coefficient was computed for evaluation of the

foreground segmentation results using all pixels in the
image.

Seed-point extraction evaluation
Single dot labels (seeds) are considered as cell detection
results. If some method produces pre-segmented regions,
then centroids are used as labels. Because our ground
truth corresponds to the binary segmented cells, we con-
sider as TP (true positive) such cells having one seed only.
As FP (false positive) are considered cells with additional
seeds in one cell and with seeds outside cells. FN (false
negative) are cells without any seed. To evaluate the per-
formance of the cell detection, Dice coefficient (F1 score)
was used

Dice = 2TP
2TP + FP + FN

. (23)

In some papers the accuracy of the centroid positions
is also evaluated. Nevertheless, these positions are not
very significant for cell segmentation. Therefore, we didn’t
evaluate this accuracy.

Single cell segmentation evaluation
For single cell segmentation evaluation the F1 score (Dice
coefficient) is used in a similar manner as for foreground-
background segmentation evaluation with followingmod-
ifications: We dealt with correspondence of objects. We
used same evaluation of correspondence as [64] in their
SEG evaluation algorithm – cell are considered as match-
ing if:

|X ∩ Y | > 0.5|X| (24)

which ensures unambiguous pairing. The final measure
of Dice was calculated as the mean of the Dice coefficient
of all the reference objects. The cells which are on the
image boundary were labeled and they are not included in
the evaluation.
A computer with following specifications was used to

estimate computational times: Intel Core i5-6500 CPU, 8
GB RAM.

Additional file

Additional file 1: Optimal values for parameters of individual
reconstruction methods (xlsx table). * highest value not reducing
sensitivity, ** not learned because of identification of small number of
regions. nan, not a number. (XLSX 17 kb)
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