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Abstract. In the last few years, classification of cells by machine learning has become frequently used in biology.
However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms
of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coher-
ence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell mor-
phologies. We compare our approach with the commonly used method based on MO features. We tested both
classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing sev-
eral supervised machine learning algorithms. Most of the classifiers provided higher performance when quanti-
tative phase features were employed. Based on the results, it can be concluded that the quantitative phase
features played an important role in improving the performance of the classification. The methodology could
be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-
controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the
accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient
contrast and high-spatiotemporal phase sensitivity. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
In many fields of biology, such as cancer research,1 drug discov-
ery,2,3 cell death,4 phenotypic screening,5 study of pathological
processes,6,7 or interactions of cells with biomaterials,8 the
microscopy study of cell morphology belongs to essential
research methods. Manual observation and evaluation of cell
morphology in microscopy images require a trained biologist
who performs inspection on every image. Nowadays, the
increasing prevalence of automated image acquisition systems
is enabling microscopy experiments that generate large image
datasets. As such, manual image analysis becomes rather
time-consuming and requires considerable effort and concentra-
tion of the investigator. Moreover, the analysis provided by one
person has a tendency to be biased by subjective observation.
The analysis results, therefore, largely depend on personal skills,
decisions, and preferences. Consequently, these aspects impose
significant constraints on the speed and reliability of cell mor-
phology evaluation from microscopy images.

One of the approaches to address these limitations is super-
vised machine learning.9 Finally, the algorithms of supervised
machine learning are increasingly being applied to classification
of microscopy data. Such a solution provides an objective
unbiased method of scoring the content of microscopic images

in contrast to subjective manual interpretation, thus potentially
being more sensitive, consistent, and accurate.

When applying the supervised machine learning to the clas-
sification of cell morphologies, a computer is trained based on
example images of cells belonging to predefined morphological
classes. Once the cells are segmented, the common step is to
represent each of them by a set of features, for the purpose of
dimensionality reduction. The features are summarized into
a feature vector, which serves as an input to the classifier.
After the classifier is trained on the user-labeled training exam-
ples, it is able to distinguish between a defined set of cell classes.

In the last few years, a lot of work has been done in auto-
mated image analysis by machine learning. A machine learning
approach for classification of erythrocytes in anemia based on
morphological changes was presented in Ref. 6. Automated
classification of myeloma cells in microscopic images was pro-
posed in Ref. 10. In both studies, the input images for classifi-
cation were gained by bright-field imaging of stained cells. The
staining ensures the accurate segmentation of cells, yet there is
a demand for sample preparation and the possibility that the
stain would influence the natural cell behavior.

Another study11 presents application of machine learning
techniques to analysis of cell morphology in phase-contrast
microscopy images. However, the images gained by phase-
contrast microscopy demonstrate halo artifacts, which makes
the boundaries of the cells appear brighter and makes the seg-
mentation challenging and inaccurate. This may result in poor
accuracy of the machine learning classifier.

Several publications have focused on cell classification of
images gained by fluorescent microscopy. Automated scoring
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of diverse cell morphologies by means of machine learning was
described in Ref. 12. Several automated image analysis methods
for high-content screening of fluorescent images were summa-
rized in Ref. 13. However, the drawback of these techniques is
the necessity of sample preparation by fluorescent staining
of the cells before imaging. Moreover, the fluorescent stain
is likely to influence the cell behavior as well as the cell
morphology, which could possibly affect the experiment and
classification.

In the mentioned approaches, the features extracted from
the images mostly represent the cellular shape or the intensity
values depending on the stain concentration, but they are not
quantitative in terms of cell mass.

In recent years, digital holographic microscopy (DHM) has
proven to be a very versatile noninvasive tool for the observation
of live cells,14–17 while overcoming the limitations of the previ-
ously mentioned approaches. DHM provides quantitative phase
images (QPIs) with high intrinsic contrast without labeling and
since the images contain quantitative information about cell
mass, it may potentially improve the performance of the
classification.

Several publications studied cell behavior by monitoring cell
features extracted from the QPI. Cell life cycle characterization
by monitoring of morphometric (MO) and quantitative phase
features was proposed in Ref. 18. Assessment of wound healing
by monitoring the cellular volume, dry mass, and refractive
index was presented in Ref. 19. The study of cancer cell growth
and drug response by monitoring cell dry mass is described in
Ref. 20. In the mentioned publications, the authors extract quan-
titative phase features and monitor their changes, but do not
apply machine learning algorithms for the automated assess-
ment of cell behavior.

Only limited work has been published toward the application
of machine learning classification algorithms to QPI.
Morphology-based classification of red blood cells using
DHM was presented in Ref. 7. Automated detection and clas-
sification of living organisms in drinking water resources using
DHM was performed in Ref. 21. The automated diagnosis of
breast and prostate cancer from tissue biopsies was described in
Refs. 22 and 23, respectively. However, to our present knowl-
edge, none of the publications studied the potential of QPI for
the classification of morphology of live adherent eukaryotic cells.

In this work, we demonstrate the methodology for classifi-
cation of cell morphologies based on QPI in the experiment
with deprived cancer tissue cells. In the experiment, the
cells are exposed to phosphate-buffered saline (PBS). PBS
deprives cells of nutrients and causes morphological changes.
The deprived cells exhibit different types of morphologies,
which represent the categories for classification. The cells
were imaged with a coherence-controlled holographic micro-
scope (CCHM).24,25 The imaging in CCHM is based on the
interference of the object and the reference light beams,
which enables it to detect the phase delay induced by the speci-
men (SP). It has been demonstrated in several publications that
the measured phase in the image corresponds to the dry mass
density distribution within the cell.26,27 Since the dry mass den-
sity distribution within the viable and deprived cells differs
markedly, the features extracted from the QPIs play an important
role in the classification. The goal of the experiment was to
evaluate the contribution of QPI for the classification of tissue
culture cell morphologies and compare the results with a com-
monly used approach based on MO features.

2 Methods
Cell culture and deprivation of cancer tissue cells are described
in section “cell culture techniques.” The imaging process is
explained in section “image acquisition.” Finally, the image pre-
processing and classification methods are presented in section
“classification.”

2.1 Cell Culture Techniques

In the experiment, LW13K2 cells (spontaneously transformed
rat embryonic fibroblasts) were exposed to conditions that
induce nutritional deprivation. The cells were first grown
attached to a solid surface and maintained in Eagle’s minimal
essential medium (Sigma-Aldrich, Czech Republic) supple-
mented with 10% fetal bovine serum (Sigma-Aldrich, Czech
Republic) and gentamicin (Sigma-Aldrich, Czech Republic) in
an incubator at 37°C and humid 3.5% CO2 atmosphere. The
cells were harvested by trypsinization and transferred into
five sterilized observation chambers μ-Slide I (Ibidi GmbH,
Germany). The seeding densities were 20 cells∕mm2 in order
to achieve sparse coverage for the purposes of segmentation
of individual cells. The observation chambers were kept in
the incubator under the same conditions.

The culture medium was replaced by PBS after two days. For
the experiment, standard PBS (NaCl 8 g∕l, KCl 0.2 g∕l,
KH2PO4 0.24 g∕l, Na2HPO4 1.44 g∕l, pH 7.4) was used. PBS
deprives cells of nutrients and causes changes in cell morphol-
ogy. The cells were imaged immediately after PBS application.
The same procedure was repeated for all five observation
chambers.

2.2 Image Acquisition

CCHM,24,25,28,29 now also available as Q-Phase (by TESCAN
Orsay Holding, a.s., Brno, Czech Republic), was employed
for the quantitative phase imaging of cells. The optical setup
of the microscope is based on Mach–Zehnder type interferom-
eter modified for incoherent off-axis holographic microscopy
(Fig. 1). The illumination is formed by a low coherence source
(halogen lamp), interference filters, collector lens, and the beam-
splitter (BS), which splits the beam into two separated optical
arms—reference and object arms. Matching condensers, objec-
tives, and tube lenses (TL) are contained in both arms. The two
arms are nearly identical except for the diffraction grating (DG)
placed in the reference arm used for the spatial separation of the
light of different wavelengths. Beams from the reference (only
the + first-order beam is transmitted) and object arm interfere in
the output plane (OP), where the interference pattern (hologram)
is formed. The hologram recorded by the CCD camera is further
reconstructed using a Q-Phase SW (TESCAN Orsay Holding, a.
s., Brno, Czech Republic). The numerical reconstruction of the
hologram is based on fast Fourier transform methods30 and
phase unwrapping.31 Since the reconstructed QPIs are affected
by the phase aberrations, they are compensated by the algorithm
described in Ref. 32. The phase in the reconstructed quantitative
image is proportional to the optical path difference of the two
arms according to

EQ-TARGET;temp:intralink-;e001;326;127φðx; yÞ ¼ 2π

λ
dðx; yÞ½ncðx; yÞ − nm�; (1)

where λ is the illumination wavelength, d is the thickness of the
cell, and nc is the mean axially integrated refractive index of the

Journal of Biomedical Optics 086008-2 August 2017 • Vol. 22(8)

Strbkova et al.: Automated classification of cell morphology by coherence-controlled. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 9/4/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



cell immersed in the culture medium of refractive index nm.
33 It

has been shown that the measured phase in the image corre-
sponds to the dry mass density distribution within the cell.26,27

In contrast to existing DHM techniques,4,7,18,19 the use of
incoherent illumination enables high-quality quantitative
phase imaging with strong suppression of coherent noise and
parasitic interferences while providing high temporal stability
and spatial uniformity of the phase measurement.25 Using the
approach described in Ref. 34, the temporal and spatial phase
sensitivities were determined as 0.0081 and 0.0094 rad, respec-
tively. The lateral resolution is comparable with the lateral res-
olution of conventional wide-field optical microscopes, thus
twice better than in typical DHM techniques with a coherent
source of illumination. Moreover, the low illumination power
of the incoherent source (0.2 μW∕cm2) is not likely to influence
the physiological functions of the imaged cells, which is very
convenient for live cell imaging.

During the experiment, the samples were illuminated with
a halogen lamp through the interference filter (λ ¼ 650,
10 nm FWHM). Microscope objectives (Nikon Plan Fluor
20 × ∕0.5) were utilized for the imaging. At least 100 images
were acquired from each sample in pursuit of collecting enough
data for the classification. Images were obtained by scanning in
a random manner across each sample. All images were gathered
in the database, which was used for the classification.

2.3 Classification

Classification, as a category of supervised machine learning,
aims to build a model that makes predictions based on a
self-learning procedure on known labeled data. In the case of
cell classification, the algorithm identifies patterns in the
input images and trains a model based on labels which were
assigned to the cells in the images by an expert biologist.
Such a trained model is able to classify cells in new so-far
unseen images. The essential precondition for the successful
classification is a sufficiently large database of labeled cell
images on which the classifier is trained. The overview of

the classification process based on QPI is shown in Fig. 2.
The whole procedure was performed in MATLAB (MathWorks,
Inc.).

2.3.1 Image preprocessing and feature extraction

Before the classification itself, the cells in the images were first
segmented from the background by a marker-controlled water-
shed segmentation approach35 and identified as separate regions
of interest (ROIs). Each ROI was represented by a set of cell
features—a procedure referred to as feature extraction. Two
types of features were extracted: MO and QPI features.

a. MO features. The features mostly reflect the shape of
the cell and are explained as follows.

i. Footprint area (FA) is calculated as the sum of the
pixels of the projected cell area. Pixels belonging to
the cell region have the value m ¼ 1, otherwise
m ¼ 0. When multiplied by the pixel area accord-
ing to following equation, the resulting value of FA
is obtained in units of area

EQ-TARGET;temp:intralink-;e002;326;301FA ¼
Xn

i¼1

miA; (2)

where n is the number of pixels in the image and
A is the pixel area.

ii. Perimeter of the footprint area (PFA) is defined
as the sum of pixels in the inner boundary of
the region. When multiplied by the pixel size, the
resulting value of PFA is in units of length.

iii. Convex area (CA) is calculated as the sum of pixels
of the convex cell region, multiplied by the pixel
area. The boundaries of the convex cell region
are defined by the smallest convex polygon that
contains the region of the cell.

iv. Perimeter of the convex area is calculated as a sum
of pixels in the inner boundary of the region and
multiplied by the pixel size.

v. Solidity (S) specifies the proportion of the pixels
belonging to the cell FA to those which are con-
tained in the CA.

Fig. 1 Optical setup of CCHM. Light source (S), relay lens (L), BSs,
condensers (C), SP, reference object, microobjectives (O), TL, DG,
output lenses, OP, detector (D).

Fig. 2 Overview of the classification process based on QPI. First,
image preprocessing is carried out. The cells in the image are seg-
mented from the background and identified as ROIs. Cell features
are extracted for every ROI. The data are split into training and testing
sets in order to avoid overfitting. The training data are labeled by an
expert biologist and serve as an input for the classifier. The classifier
is trained on labeled data and prepared to perform the classification
on testing unlabeled data.
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vi. Roundness (R) determines the deviation of the cell
region from the circular shape. Roundness depends
on the FA and its perimeter according to

EQ-TARGET;temp:intralink-;e003;63;719R ¼ 4πFA

ðPFAÞ2
: (3)

vii. Indentation (I) evaluates the level of cell boundary
indentation. Indentation can be calculated as the
ratio of perimeter of the CA and perimeter of
the FA as follows:

EQ-TARGET;temp:intralink-;e004;63;632I ¼ PCA

PFA

: (4)

viii. Eccentricity (EC) specifies the eccentricity of the
ellipse that has the same second-moments as the
cell region. The eccentricity is calculated as the
ratio of the major axis and minor axis lengths.

b. QPI features. The features are extracted from the
phase values of the cell in QPI, and therefore contain
quantitative information about the dry mass density
distribution within the cell.

i. Total phase of the cell (φtotal) is calculated as the
sum of phase values (in radians) in the pixels
belonging to the region of the cell. φtotal is calcu-
lated as follows:

EQ-TARGET;temp:intralink-;e005;63;443φtotal ¼
Xk

i¼1

φi; (5)

where k is the number of pixels of the cell region
and φ is the phase value in the i’th pixel belonging
to the region of the cell.

ii. Average phase (μφ) specifies the average phase
value in the cell region. The average phase value
is defined as the total phase over the FA of the
cell.

iii. Median describes the median of the phase values
belonging to the cell region.

iv. Variance (Varφ) and standard deviation of the
phase (σφ) determine the variation of the phase val-
ues, and the dry mass distribution within the cell.
The variance and standard deviation of the phase
are calculated as follows:

EQ-TARGET;temp:intralink-;e006;63;235Varφ ¼ 1

k − 1

Xk

i¼1

ðφi − φavgÞ2; (6)

and

EQ-TARGET;temp:intralink-;e007;63;182σφ ¼ ffiffiffiffiffiffiffiffiffiffi
Varφ

p
: (7)

v. Skewness (Skewφ) is calculated from the histogram
of the phase values and describes its shape.
Skewness measures the symmetry of distribution
of the phase values from the mean value. The
parameter is determined by

EQ-TARGET;temp:intralink-;e008;63;97Skewφ ¼
Pk

i¼1 ðφi − φavgÞ3
ðk − 1Þσ3φ

: (8)

The values of skewness close to zero report the
symmetrical distribution of phase values, which is
characteristic for spread and well-adhered cells.

vi. Kurtosis (Kurtφ) is also derived from the histogram
of the phase values and quantifies the extent to
which the shape of the data distribution matches
the normal distribution. Kurtosis is described as
follows:

EQ-TARGET;temp:intralink-;e009;326;660Kurtφ ¼
P

k
i¼1 ðφi − φavgÞ4
ðk − 1Þσ4φ

: (9)

All extracted features are summarized into feature vectors,
each feature vector representing one cell. Each cell feature vec-
tor is then assigned one of the class labels determined by the
expert biologist. The class labels are later used for training of
the classification algorithm.

In the next step, all extracted features undergo normalization
in order to scale the feature values to a fixed range from 0 to 1.
The normalization speeds up the training of the classifier, pre-
vents the classifier from getting stuck in local optima, and is
an essential step in the classification for some algorithms. The
normalization of the features is done via

EQ-TARGET;temp:intralink-;e010;326;485Xnorm ¼ X − Xmin

Xmax − Xmin

; (10)

where Xnorm is the normalized value of the feature, X is the origi-
nal value of the feature, Xmin is the minimum value of the fea-
ture, and Xmax is the maximum value of the feature.

2.3.2 Classification algorithms

It is well known that the performance of the classification is
highly dependent on the selection of the classification algo-
rithm,36 thus we employed several machine learning algorithms
to correctly compare the performance of the classification with
two different sets of features. Moreover, each algorithm can be
adjusted by setting its parameters, therefore, each algorithm was
tested by several possible variations.

To verify the assumption that QPI features improve the clas-
sification performance over the commonly used MO features,
two sets of feature vectors have been used for the classification.
In the first case, the feature vector consisted of MO features
only. In the latter case, QPI features were also added. A short
description of the used algorithms is presented below:

Decision trees. In this method, a tree structure is built with
root node and leaf nodes. The leaf nodes represent the classes of
the features. Every interior node in the tree consists of a decision
criterion. The features are partitioned based on homogeneity
until a leaf node is assigned to a particular class. Three types
of decision tree classifiers were used: complex, medium, and
simple tree, with a defined maximum number of splits: 100,
20, and 4, respectively.

Discriminant analysis. Discriminant analysis assumes that
different classes generate data based on different Gaussian dis-
tributions. To train a classifier, the fitting function estimates the
parameters of a Gaussian distribution for each class. We used
both linear and quadratic discriminant analyses.
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Support vector machines. Support vector machine (SVM)
classifier classifies data by finding the best hyperplane that sep-
arates objects with different class memberships. The optimal
hyperplane gives the largest margin between the two classes.
Margin is the maximal width of the slab parallel to the hyper-
plane that has no data points. The closest data points to the mar-
gin are called support vectors. The performance of SVM largely
depends on the kernel function mapping the training examples
into a higher dimensional feature space. Here, we used linear,
quadratic, cubic, and Gaussian kernels.

K-nearest neighbor classifier. This method uses k-nearest
neighbor (KNN) samples to determine the class of an object.
The k samples are chosen based on a similarity measure. A com-
monly used similarity measure is the distance function. A class
is assigned to an object based on the majority vote of its k neigh-
bors. Here, we used fine KNN (k ¼ 1, Euclidean distance),
medium KNN (k ¼ 10, Euclidean distance), cosine KNN
(k ¼ 10, cosine distance), cubic KNN (k ¼ 10, cubic distance),
and weighted KNN (k ¼ 10, weighted by the inverse square of
the Euclidean distance).

Ensemble classifiers. Ensemble methods use multiple learn-
ing algorithms to obtain better predictive performance than could
be obtained from any of the constituent learning algorithms alone.
Here, we used the following ensemble classifiers: bagged trees,
boosted trees, subspace discriminant, and subspace KNN.

Artificial neural network. The artificial neural network
(ANN) approach is inspired by the human learning process.
ANN consists of several layers of neurons which are joined
by weighted connections. The accuracy and performance of
ANN highly depend on the network structure. The training
of the ANN is computationally demanding, but the classification
accuracy is usually high. Here, we used a feed-forward back-
propagation neural network with 1 hidden layer containing 10
hidden neurons.

2.3.3 Performance evaluation

K-fold cross validation was used to evaluate the performance of
the classification algorithms. The data were partitioned into

k randomly chosen subsets of roughly equal size. One subset
(testing set) was used to validate the classifier, which had
been trained on the remaining subsets (training set). This proc-
ess was repeated k times, such that each subset was used for the
validation (we used k ¼ 5). Since cross validation does not use
all of the data for training, it is a commonly used method to
avoid overfitting.

To compare the performance of the classification with two
different feature vectors, several performance parameters were
calculated from the confusion matrix for each classification
algorithm: accuracy, precision, recall, and F-score.

The accuracy expresses the ratio of correctly classified exam-
ples by the classifier and is calculated as follows:

EQ-TARGET;temp:intralink-;e011;326;609accuracy ¼
P

l
i¼1

tpiþtni
tpiþtniþfpiþfni

l
; (11)

where l is the number of classes, tpi is the number of correctly
recognized class examples, tni is the number of correctly
recognized examples that do not belong to the class, fpi is
the number of examples that were incorrectly assigned to the
class, and fni is the number of examples that were not recog-
nized as class examples.

Precision is the ratio of correctly classified positive examples
to the total number of positive examples. The precision for
a multiclass classification task is determined according to

EQ-TARGET;temp:intralink-;e012;326;465precision ¼
P

l
i¼1

tpi
tpiþfpi

l
: (12)

Recall is the ratio of correctly classified positive examples to
the all examples in the actual class. The recall for multiclass
classification is determined as follows:

EQ-TARGET;temp:intralink-;e013;326;387recall ¼
P

l
i¼1

tpi
tpiþfni

l
: (13)

F-score can be interpreted as a harmonic mean of precision
and recall, calculated as follows:

Fig. 3 Morphological changes of LW13K2 cells induced by PBS. (a) Viable cells, (b) semideprived cells,
and (c) deprived cells. QPIs are shown in grayscale in units of pg∕μm2 recalculated from phase
(in radians) according to Davies.27
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Fig. 4 Results of the segmentation of nearly confluent LW13K2 cells by marker-controlled watershed
approach. (a) Original image. (b) Segmented image. QPIs are shown in grayscale in units of pg∕μm2

recalculated from phase (in radians) according to Davies.27

Table 1 Performance of the classification by different algorithms for two types of feature vectors.

Accuracy Precision Recall F -score Accuracy Precision Recall F -score

MO features MO + QPI features

Decision trees (complex) 0.896 0.865 0.861 0.863 0.961 0.948 0.945 0.946

Decision trees (medium) 0.902 0.887 0.879 0.883 0.949 0.935 0.931 0.933

Decision trees (simple) 0.851 0.824 0.743 0.781 0.931 0.918 0.913 0.915

Linear discriminant 0.876 0.837 0.743 0.787 0.962 0.949 0.936 0.942

Quadratic discriminant 0.898 0.872 0.843 0.857 0.953 0.932 0.935 0.933

SVM (linear) 0.892 0.879 0.870 0.874 0.948 0.928 0.931 0.929

SVM (quadratic) 0.885 0.840 0.830 0.835 0.958 0.944 0.943 0.944

SVM (cubic) 0.878 0.842 0.762 0.800 0.965 0.953 0.946 0.949

SVM (Gaussian) 0.893 0.889 0.855 0.872 0.963 0.957 0.947 0.952

KNN (fine) 0.878 0.857 0.720 0.783 0.971 0.954 0.953 0.954

KNN (medium) 0.878 0.849 0.695 0.764 0.948 0.931 0.918 0.924

KNN (cosine) 0.884 0.831 0.810 0.820 0.979 0.959 0.956 0.957

KNN (cubic) 0.913 0.894 0.890 0.892 0.953 0.941 0.939 0.940

KNN (weighted) 0.905 0.885 0.870 0.877 0.965 0.951 0.949 0.950

Bagged trees 0.872 0.835 0.790 0.812 0.955 0.950 0.941 0.946

Subspace discriminant 0.905 0.865 0.860 0.862 0.953 0.942 0.935 0.938

Subspace KNN 0.913 0.884 0.870 0.877 0.938 0.925 0.913 0.919

Boosted trees 0.873 0.846 0.786 0.815 0.955 0.939 0.925 0.932

Neural networks 0.884 0.845 0.815 0.830 0.962 0.949 0.939 0.944

MEAN� SD 0.888�0.015 0.859�0.022 0.815�0.058 0.836�0.039 0.956�0.011 0.942�0.011 0.937�0.012 0.939�0.011
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EQ-TARGET;temp:intralink-;e014;63;752Fscore ¼
2 × precision × recall

precisionþ recall
: (14)

For comparison of the two classification approaches, the
performance results were compared by statistical hypothesis
testing. The Wilcoxon signed rank test37 was used as a paired
nonparametric statistical hypothesis test which can reveal the
existence of significant differences between two distributions.
The null hypothesis is that the median difference between
pairs of observations is zero. P-value 0.05 was considered to
be statistically significant.

3 Results and Discussion
The proposed methodology was applied to the QPIs gained
by monitoring the nutritionally deprived cells by CCHM.
Morphological changes of cells appeared on the order of
minutes after the application of PBS. Most of the cells became
slightly deprived after 5 min. The majority of the cells were seri-
ously deprived after 20 min. The images of cells were divided by
the expert biologist into three categories based on their morphol-
ogy: viable, semideprived, and deprived cells. Viable cells did
not exhibit any changes in morphology; cells in the semide-
prived category were influenced by PBS and started to shrink
while their boundaries became indented. The deprived cells,
which were influenced the most, adopted a rounded morphol-
ogy. All images of cells were gathered in the database consisting
of 1400 cells. According to the labels assigned by the expert
biologist, the database contained the following distribution of
class labels based on their morphology: viable (540), semide-
prived (470), and deprived cells (390). The cells with uncertain
class membership were excluded from the database. Three dis-
tinct types of cell morphologies are shown in Fig. 3.

The segmentation of cells from the background by the
marker-controlled watershed approach has proven to be a crucial

step, which affects the extraction of both MO and QPI features
and hence, the performance of the classification. Therefore, we
did not consider highly overlapping cells where the segmentation
was not clear. The cells located on the border of the image were
excluded as well, as shown in Fig. 4. For the purpose of more
accurate cell segmentation, we used sparse seeding densities to
obtain subconfluently grown cells. The segmentation results in
the case of more confluent cell layers were satisfying as well,
as shown in Fig. 4. However, in the case of confluent cell layers,
there is a higher chance of less accurate segmentation results,
which may lead to poorer performance of the classification.

From the images of cells, two sets of features were extracted:
MO and QPI features. Two feature vectors were composed,
while the first one included only MO feature set and the second
one both sets. The two feature vectors formed input for the
classification algorithms. Performance measures (accuracy, pre-
cision, recall, and F-score) of each classification algorithm were
determined as a mean of the values obtained by fivefold cross
validation and can be found in Table 1. The overall performance
of the classification for each of the two feature vectors was
determined as the mean of performance parameter values
reached by all classification algorithms.

The overall accuracy of the classification using only MO
features was 0.888� 0.015, which is comparable to values men-
tioned in previous studies on cell morphology classification.6,11,38

The overall precision, recall, and F-score were 0.859� 0.022,
0.815� 0.058, and0.836� 0.039, respectively.Theclassification
using both sets of features led to higher performance of the
classifier, with the overall accuracy of the classification reaching
0.956� 0.011. In this case, the overall precision, recall, and
F-score were 0.942� 0.011, 0.937� 0.012, and 0.939� 0.011,
respectively.

The performance results of both approaches are shown in the
form of box–whiskers plots in Fig. 5. The results were compared

Fig. 5 Box–whiskers plots of overall classification performance for two types of features: (a) accuracy,
(b) precision, (c) recall, and (d) F -score. Wilcoxon signed rank test was used for the statistical analysis.
Symbols indicating significance are placed above (***: p < 0.001).
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by Wilcoxon signed rank test, which revealed significant
differences between the two classification approaches
(p < 0.001) in terms of all performance parameters (accuracy,
precision, recall, and F-score).

In order to study the impact of the cell sample preparation
and other experimental conditions on classification perfor-
mance, we tested the approach on data gained from another
independent experiment. The experiment was identically
designed, however, the cell preparation was performed by a dif-
ferent person and the classification algorithms were trained on
the images of cells from the first experiment. The performance
of the classification is summarized in Table 2 together with the
results from the first experiment. The performance of the clas-
sification on data obtained in two independent experiments was
compared by Wilcoxon rank sum test,37 which revealed no sig-
nificant differences between the classification performances in
the two experiments. According to the results, we assume that
cell sample preparation and other experimental conditions do
not significantly influence the performance of the classification.

Based on the overall results, it can be concluded that the
quantitative phase information gained by CCHM increases
the performance of the classification of cell morphologies in
contrast to commonly used methods based on MO features.
The study shows that CCHM offers preconditions for an accu-
rate classification of cell morphologies, while the main asset of
the technique lies in the accurate cell segmentation and the
quantitative nature of the images it provides.

Even though we have presented the application of quantita-
tive phase imaging together with the supervised classification
only for distinguishing different morphologies of deprived
cells, the approach might also contribute to higher performances
when it comes to different classification tasks. The methodology
can develop into a tool for the monitoring of cell live cycles, cell
death, reaction of cells to treatment, interaction of cells with
material (biocompatibility testing), detection of different exper-
imental conditions, or distinguishing different cell lines. In gen-
eral, the approach could improve the monitoring of live cell
behavior in an automated fashion.

4 Conclusion
In this paper, we have applied several classification algorithms
on the QPIs of deprived cells obtained by CCHM, while three
types of cell morphologies were being distinguished. Our goal
was to compare the performance of the commonly used classi-
fication approach based on MO features and our method also
employing quantitative phase features. After the preprocessing
steps, two sets of features were extracted from the QPIs and their

relevance for the classification was tested. A comparative
analysis between these two approaches was performed while
using several classification algorithms. The results showed (in
terms of overall accuracy, precision, recall, and F-score) that
the classification also employing quantitative phase information
outperforms the commonly used method-based solely on the
MO features. Based on the results, we assume that CCHM,
as a tool for quantitative phase imaging, could be a valuable
microscopy technique for automated analysis of live cell behav-
ior, while enabling noninvasive label-free imaging with suffi-
cient contrast and high-spatiotemporal phase measurement
sensitivity. However, the robustness of the approach can be fur-
ther improved by enlarging the image database and introducing
more features. Therefore, our future work will be aimed at data-
base and feature extension and application of the proposed
approach to different classification tasks.
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