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ABSTRACT

We present here a new method based on conical di�raction for Z-super-localization. Using conical di�raction in
a thin crystal we could shape the PSF so that it exhibits signi�cant variations along the z-axis, and through an
estimator we measure the position of the emitter. We study how this PSF could be used for single molecule imag-
ing with a global assessment of the PSF by Fisher information analysis.. Preliminary experiments demonstrated
that we could obtain the axial position with accuracy up to one tenth of the Rayleigh range. This technique
would lead to resolutions of tens of nm with the use of high NA microscope objectives. Moreover it is fully
compatible with 2D super-resolution imaging systems, which it could easily be coupled to.

Keywords: PSF shaping, CRLB, conical di�raction, single molecule imaging

1. INTRODUCTION

With the spectacular momentum of popularity known by �uorescence microscopy in biological research, several
methods to improve the resolution of microscopes have been developed. Thus, the resolution limit of around
300nm coming from di�raction could be bypassed by methods such as �uorescence photo-activated localization
microcopy (PALM)1 and stochastic optical reconstruction microscopy (STORM).2 These technique based on
wide-�eld imaging of sparse single-molecule emitters can provide 2D resolutions under 50 nm. Unfortunately,
with the features of standard PSF the resolution in axial dimension could not be improved as much as laterally.
To overcome this e�ect, methods based on PSF shaping were developed to provide 3D Super Resolution informa-
tion. For instance, with a mask in Fourier Plane, a double helix PSF can yield the lateral and the axial position
of an emitter.3,4 Recent developments of this technique highly improved axial positioning accuracy.5 Similarly,
an astigmatic lens can create PSFs that varies along Z, and the position of the emitter can be measure using this
feature.6 To compare these methods, a calculation of the Cramer-Rao lower bound (CRLB) is usually imple-
mented.7 Using this tool, the methods can be compared with criteria based on range or resolution. In this paper
we show that PSF shaping can also be done by conical di�raction as already done in the excitation path in.8�10

Similarly Z varying patterns can be obtained and implemented in the detection path of the microscope. After
preliminary experiment we used CRLB calculations to tune the parameters used in the method. A discussion on
the advantages and drawbacks of this technique concludes the paper.

2. PSF SHAPING WITH CONICAL DIFFRACTION

Conical di�raction occurs when light is sent on a biaxial crystal along one optical axis. However, if a quick analysis
from Maxwell equation allows understanding when conical di�raction occurs, it is not su�cient to characterize
entirely the phenomenon. Therefore we are using the theory developed by Berry (which originates from Maxwell
theory though), leading to equations found in Berry's seminal paper,11 so that we possess all the tools to carry
out simulations on conical di�raction.

Observing again the equation (1) from our previously published proceeding,10 we can see that the Electric
Field is given by :
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E(R, Z) =

[
B0(R,R0, Z)Id+B1(R,R0, Z)

(
cos θ sin θ
sin θ − cos θ

)](
ex
ey

)
, (1)

where B0 and B1 are beams associated with Bessel functions of zero and �rst order respectively:

B0(R,R0, Z) = k

∞∫
0

dPPa(P )e−
ikZP2

2 cos(kR0P )J0(kRP ),

B1(R,R0, Z) = k

∞∫
0

dPPa(P )e−
ikZP2

2 sin(kR0P )J1(kRP ),

From this equation, we can implement a simulation tool using MATLAB c©.

2.1 Shaping the PSF

By using circular polarizers at crystal input and output, we could separate the two beams going out of the crystal.
If we remove the second circular polarizer after the crystal, then the beam is composed of two components B0

and B1 that are added together and create a pattern which is the simple sum of the two patterns. This sum is
in fact an incoherent sum where it is the intensities of the two patterns which are added. The sum is incoherent
because we recall that the two exiting beam have an othogonal polarization so that they do not interfere. This
fact becomes false when a linear polarizer is placed at the output of the crystal. With such a device, the two
beams are projected on the same polarization basis and therefore they interfere. To understand how these two
beams interfere, we need to observe the respective phase of the two beams. Figure 1 with arrows showing both
phase and intensity of the beams are useful to understand how the two beams interfere. On the resultant pattern,
we can see that the singularity of phase in the middle of the Vortex beam is shifted by the uniform phase of the
Fundamental beam. As a result, the intensity is not invariant by rotation anymore.

Figure 1. Representation of a fundamental beam a) and d) , a vortex beam b) and e), and the addition of the two beams
c) and f).



Elliptical polarizers. We can see these beams as the sum of four di�erent beams which are two Fundamental
beams and two Vortex beams. The two Vortex beams have an opposite phase handedness (one comes from a
left circularly polarized beam and is transformed by the crystal into a right circularly polarized light the same
thing happens in the opposite way for the second beam, leading to opposite handedness of Vortex) ; and the two
Fundamental beams have a constant phase. We can see that rotating a linear polarizer has a rotational e�ect
on the phase map of the beams. Thus we understand that for one value ∆θ+ = 0◦ of the two Fundamental
beams are in phase, and for another value ∆θ− = 90◦ the two fundamental beams are in opposition of phase
and cancel. As a result at ∆θ = ∆θ− , the resulting beam is the sum of only two Vortex beams with opposite
phase handedness. The resulting intensity pro�le is composed of two intense lobs with a zero intensity between
them that we call half-moons.

In fact, instead of limiting ourselves to linear and circular polarizers, we more generally use elliptical polar-
izers which are the simple addition of a linear polarizer and a Quarter Wave Plate. The pattern generated, can
be seen as previously as the coherent sum of four beams (two Vortex beams and two Fundamental beams) with
varying orientation and intensity. In fact, an elliptical polarization state can be seen as the sum of two opposite
circular polarization state of di�erent intensity so that the same four beams described before play a role in the
�nal pattern with di�erent contribution. The case of the Half-Moons pattern is a particular case obtained for
four beams of same intensities and special orientation leading to the cancelation of the two fundamental beams.
By playing with all this parameters we could generate a great number of di�erent patterns. We show some of
them in �gure 2 where all the patterns are obtained for orientation of the elliptic polarizers at ∆θ = 90◦.

Figure 2. Table showing several patterns in the focal plane, obtained with elliptic polarizer with orthogonal orientations
of their fast axis and varying ellipticity.

2.2 Z-varying PSF

We demonstrated how conical di�raction could shape the classical Airy PSF into various patterns. Quick
observations were made to observe their variations in z at the scale of a standard Airy PSF. Some patterns
showed no variation, the shape of the pattern staying the same while the intensity decreases with defocus (e.g.
Vortex distributions or Half-Moons). Other patterns showed variations of shape with defocus that draw our
attention. In the following we describe and provide an analysis of those Z-varying PSFs.



Stokes PSF. The PSF obtained from a linear polarizer at crystal input and circular polarizer at crystal output
is one of those PSFs. We named it Stokes PSF, and we observed the pattern in focal plane on �gure ??. We
recall that it is the coherent addition of a Vortex beam and a Fundamental beam. We saw previously that the
e�ect of the fundamental beam on the Vortex beam was to shift the phase singularity. This e�ect goes on after
and before the focal plane but with defocus the phase of the Fundamental beam varies less rapidly than the one
of the Vortex beam, so that the place of destructive interference also rotates. Figure 3 illustrates this e�ect.

Figure 3. Simulation of patterns obtain at ρ0=0.45 before focal plane (Z=-0.2ZAiry a) to d)), at focal plane (Z=0; e) to
h) ) and after focal plane (Z=0.2ZAiry i) to l) ). The Stokes pattern (c,d,g,h,k,l) is the addition of a Vortex beam (b f
and j) and an Fundamental beam (a e and i).

Shifted-Moons pattern. A second pattern that draws our attention is a pattern obtained with two elliptic
polarizers oriented at 90◦and same ellipticity. The global pattern is in fact the coherent addition of the usual
Half-Moons pattern with two fundamental beams out of phase that do not cancel because of their di�erent
intensity. Once again, we can see that the phase of the fundamental changes less quickly with defocus than the
phase of the Half-Moons. Figure 4 highlights this e�ect. As a result the constructive interference between the
fundamental beam and the Half-Moons beam varies with defocus. In the following, we refer to this pattern as
the Shifted-Moons patterns.



Figure 4. Simulation of patterns obtain at ρ0=0.45 before focal plane (Z=-0.2ZAiry a) to d)), at focal plane (Z=0; e) to
h) ) and after focal plane (Z=0.2ZAiry i) to l) ). The Shifted-Moons pattern (c,d,g,h,k,l) is the addition of a Half-Moon
pattern (b f and j) and an Fundamental beam (a e and i).

2.3 Experimental validation

We could set up an optical bench to observe these patterns. Instead of using a �uorescent single emitter like a
�uorophore or a quantum dot, we used a Point Source as an emitter. The Point Source is generated by focusing
a collimated laser beam with a high quality microscope objective (Leitz 50X/0.85 P) mounted on a translation
stage so the axial position of the Point Source can be adjusted. A 1 : 1 telecentric relay system focuses the light
in a 0.8mm thick slab of LBO crystal. The same relay system images the Focal Image Plane on the camera.
The advantage of a dual telecentric relay system is the ability to insert very easily any polarizing element so the
state of polarization of the incoming/outcoming light can be controlled very accurately and uniformly. Figure 5
shows a scheme of the set-up and the intensity distributions we could generate and observe thanks to it. These
distributions showed the same Z-variations as the simulated one.



Figure 5. Top: Scheme of the set-up to observe Z-varying distributions. Bottom: images on the camera of the generated
distributions for di�erent values of z

3. SINGLE MOLECULE IMAGING WITH CONICAL DIFFRACTION

3.1 Choice of an estimator

This Z-varying patterns recall the techniques used in PALM and STORM to obtain information on the axial
position of �uorophores. The same principle could be applied with the Z-varying pattern obtained by using
conical di�raction. The axial position of a �uorophore could be measured by observing the pattern obtained in
a lateral slice with a camera, as shown by �gure 6. To know the position of the emitter, a estimator has to be
chosen. Among several possibilities we chose an estimator that cumulated the advantages of being noise-tolerant,
anti-symmetric in respect to the focal plane, and nearly linear near the focal plane. In the case where the Shifted-
Moons pattern is used, a simple intensity ratio of the two lobs can give the axial position of the emitter. The
idea could be apply to the Stokes pattern, where a measure of the orientation of the dark point could give the
axial position of the emitter. In the following of this section, we will analyze the theoretical localization accuracy
an estimator based on these distributions could reach. To do so, following the methodology of the literature, we
will compute the Cramer-Rao lower bound of the Fisher information.

Figure 6. Simulated patterns for di�erent defocus of emitter.



To compute this estimator from an image, the following steps are done:

• Identify two local maxima corresponding to the maximum of each lob

• Crop the image to a disc centered in the middle of the two maxima, with a diameter of 3 times the distance
between the two maxima.

• Create a logical mask that equals one for the 1% of higher intensity pixels of each area and zero for other

• Identify the two part of the mask, which leads to two masks each corresponding to one lob.

• Multiply each of these masks with the initial image which leads to two images with only one lob in each.

• For each resulting image, sum the values of each pixel which leads to two scalar I1 and I2

• Compute the value R = 100× I1−I2
I1+I2

We �rst applied this steps to the simulation images. We obtained the curve presented in �gure 7 which as
mentioned before has a linear behavior near the focal plane (bending point in Z=0) and is anti-symmetric. We
consider that this estimator is noise-tolerant because it is calculated from an area of pixels (and not only one
pixel), and these pixels are those receiving a signal much higher than the background noise.

Figure 7. Ratio of the lobs of the simulated Shifted-Moons pattern.

From the process described previously, we tried to quantify what would be the e�ect of noise on the estimator.
However, when considering the steps implied in the process we could not �nd an analytical relation between the
estimator and the SNR. From this statement, stayed one way to quantify the e�ect of noise on the value of the
estimator, which is the stochastic way. If we did not add to our simulated images a varying noise to observe its
e�ect on the estimator, we did an experimental study with our set-up, and for several positions of emitter we
took thousands of images to see the variation of the estimator with the noise. With this step, we could determine
the statistic error of the estimator and relate it to an standard error in the position of the emitter. The �nal
curve obtained with the previously described estimator applied on the experimental images, with errors bars



corresponding to experimental standard errors, is shown in �gure 8. The conclusion of this experiment is that
with this lay out we were able to measure the position of a an emitter from one image, with an accuracy of
20 microns corresponding to 0.006ZAiry. However, such accuracy with real �uorophores would be di�cult to
obtain because the �uorescent light would be weaker than the light coming from our experimental point light
originating from a laser. Consequently, the Signal Noise Ratio would be less good leading to a worse accuracy
in the calculation of the ratio of intensity between the two lobs of the pattern, and in the end a worse accuracy
on the estimated axial position.

Figure 8. Estimator calculated from the experimental patterns.

3.2 CRLB calculation

To be able to assess how e�ective would be the use of this PSF in a 3D super-localization scheme, we introduce
the tools commonly used to quantify relevant parameters of the PSF. From statistical information theory, the
e�ectiveness of a PSF for encoding the position of an emitter is based on Fisher information,12 a mathematical
measure of the sensitivity of a quantity (the intensity) to changes of a parameter (defocus). With the Fisher
information function, we can compute the Cramer-Rao lower bound (CRLB), which is the theoretical best pre-
cision that can be achieved with an unbiased estimator. This best precision may be obtained in practice with a
good estimator, but this is independent of the CRLB calculation.

Many articles recently reported the performances of 3D super-localization scheme for di�erent PSF-shaping
methods including Double-Helix, Biplane and Astigmatism.5,7, 12 We implemented this calculation for two dif-
ferent PSF types: for an PSF showing astigmatism to have a reference measure to compare our method to and
a PSF shaped with conical di�raction. To to so we �rst compute the 3D PSF resulting of a pupil sampled to a
256× 256 grid, with steps of defocus of 250nm.



For the standard PSF calculation, the pupil in Fourier-plane is given by P (x′y′) = circ(r/R) for an emitter

on axis,where R is the radius of the pupil plane, circ(η) =

{
1, η < 1
0, η ≥ 1

}
.

For the PSF showing astigmatism we start from a pupil P (x′y′) = circ(r/R)× exp(iAST (r)) where AST(r)
accounts for the introduction of astigmatism, with AST (r) = cAST

√
6 × r2.cos(2θ) with cAST a coe�cient to

quantify astigmatism

For the PSF obtained by conical di�raction :

P (x′y′) = circ(r/R)×
[
cos(kR0P )− isin(kR0P )×

(
cos θp sin θp
sin θp − cos θp

)]
a(P ) (2)

The image formation model, using u, v for the real space coordinated at the detector plane, is derived from
the Fresnel approximation and the intensity at the detector plane Ip is given by :

Ip(u, v) ∝
∣∣∣∣FT {P (x′, y′).exp(

−iπαM2zr2

λf2
)exp(

2iπM(xx′ + yy′)

λf
)

}∣∣∣∣2 (3)

In this expression, the �rst exponential term accounts for the quadratic phase induced in the pupil plane when
an emitter is at a distance z from the focal plane. The second exponential term is a linear phase-ramp used to
account for the lateral displacement of the emitter whose position is encoded by parameters (x,y,z). f is the tube
lens focal length, λ = 560nm is the peak emission wavelength and M=100 is the magni�cation. The parameter
α = 0.81 is used to augment the Fresnel propagation model to account for defocus in a high-index immersion
medium (n=1.518), and better approximate the phase of the light propagating through a non-paraxial optical
system. We used a pupil plane radius of R=2.15 mm. Remark that the coordinate scaling is such that camera
coordinate (u, v) correspond to the Fourier plane frequencies (u/λf, v/λf). Additionally, the actual measured
image is pixelated, due to the �nite pixel size of the detector. For a given pixel size of 16µm , the PSF appearing
on the camera is �nally obtained with an interpolation to the right scale. The number of camera pixel is chosen
to be Np=64. Finally a normalization step is operated in order to have a total number of photon Nph per frame,
when summing over all the pixel of one plane z.

We �nally obtain the value µ(z, k) of the detected PSF model for each pixel (k). To compute the Fisher
information, we assume an additive Poisson noise and a constant background of β, for a point source along the
optical axis is given by :

IFisher(z) =

Np∑
k=1

1

µ(z, k) + β

(
∂µ(z, k)

∂θ

)T (
∂µ(z, k)

∂θ

)
(4)

where θ = (x, y, z) is the position of the emitter.

3.2.1 Astigmatic PSFs

We ran the calculation for a astigmatic PSF, in order to compare the two similar methods. In this case there
is no photon loss, and the accuracy obtained by this method is very good. These results are consistent with
previously published results by di�erent groups.5,7 Figure 9 here is given for the sake of comparison only. The
set of parameters chosen for the simulations is the same as in one of the latest reference on the subject.5



Figure 9. CRLBz of a PSF shaped by astigmatism with parameter cAST=20000

3.2.2 Optimization of PSF obtained by conical di�raction

We ran the calculation for the shifted-moons PSF with di�erent parameters for the PSF generated by conical
di�raction. The parameters implied are the crystal thickness and the polarization states generator and analyzer
at crystal input and output. Several optimizations were made, depending on the range targeted, but in all case,
we tried to obtain the lowest more uniform CRLB over a �xed range. Two ranges were studied : 3 microns, and
1 micron. In each case we found the best value of parameter (crystal thickness, ellipticity of polarizers). Figure
10 and 11 show the CRLB curves obtained.

It is striking to observe that the general values for the CRLB are higher than the general values obtained
for a astigmatic PSF. This is due to the loss of photons implied by PSF shaping by conical di�raction. Indeed,
as the �uorescent light is widely regarded as not polarized at �rst (an assertion that could be questioned), one
half of the photons are lost after the �rst polarizer and then another quantity of the remaining photons is lost
after the analyzer. This quantity varies with the parameters (ellipticity and crystal thickness) implied in the
PSF shaping. Though the �rst photon loss due to the polarizer can be reduced thanks to clever polarization
engineering, we added in the algorithm a mechanism to take into account the loss of photons in the shaping
process, so that in the end a reduced number of the photon reached the camera. This number vary with the
parameters, but is generally around 30% of the initial amount of photon (3500 photons in our calculations). This
explain why the value of the CRLB is higher for the PSF shaped by conical di�raction. Still, the shaping allow
to reduce the peak of the CRLB so that the value obtained with conical di�raction are far below the pic value
of the CRLB obtained with a standard PSF.



Figure 10. CRLBz of a PSF shaped by conical di�raction with an ellipticity parameter of 10 degree and crystal thickness
parameter of 1mm. This PSF is good for operating at a range of 3µm

Figure 11. CRLBz of a PSF shaped by conical di�raction with an ellipticity parameter of 20 degree and crystal thickness
parameter of 0.8mm. This PSF is good for operating at a range of 1µm

4. DISCUSSIONS AND CONCLUSION

- meaning of CRLB = local variation, may be unadapted to represent the global variation of a PSF (in particular
for Airy pattern)
- The rejection of photon because of the polarizers in the shaping by conical di�raction clearly limit its action
- However the change of shape of the CRLB curve can be made nearly uniform on a short range
- Beside, conical di�raction is simple to implement (compared to SML)
- Moreover CRLB means best precision, but seems very far from practical result
- Is it possible to consider that one emiter emits non-uniform polarised light?
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